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Large Language Models

We will mostly be talking 
about Decoder only 
Models like LLama, 

Mistral, GPT …



Causal Self Attention



Nano GPT (Andrej Karpathy)



Causal Attention in Action
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Final Step in the generation Process
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Major Challenge of LLM Inference

At inference time, the model generates one token at a time, this doesn’t allow 
us to use the multi token computation speedups given by GPUs.

Source: In the Fast Lane! Speculative Decoding — 10x Larger Model, No Extra Cost | by TitanML | Medium 

https://medium.com/@TitanML/in-the-fast-lane-speculative-decoding-10x-larger-model-no-extra-cost-f33ea39d065a


Speculative Decoding

Source: In the Fast Lane! Speculative Decoding — 10x Larger Model, No Extra Cost | by TitanML | Medium 

https://medium.com/@TitanML/in-the-fast-lane-speculative-decoding-10x-larger-model-no-extra-cost-f33ea39d065a


Speculative Decoding

1. Main Concept behind Speculative Decoding is having candidate tokens 
for future positions and verifying them in a single forward pass parallely.

2. Trading off Compute for more tokens in a single step.

3. Usually requires a Draft Model that provides the candidate tokens quickly

4. Common Rule of thumb is to use a Draft Model that is at least 3x faster 
than the target model

5. For best acceptance of the candidate and speedup, the draft model 
should be fine tuned aligning with the target model



Verification in Action
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● Generation follows a memory-bound computational pattern 

● Main latency bottleneck arises from memory reads/writes rather than 
arithmetic computations due to the inherently sequential nature of the 
autoregressive decoding process

● A common mitigation for this inefficiency was to simply increase the batch 
size, enabling the parallel production of more tokens

● Increasing the batch size in this context not only introduces higher latency 
but also substantially inflates the memory requirements for the Transformer 
model's key-value cache 

● As of September 2023, generation costs approximately 2x higher for GPT-4 
and roughly 3x for Claude 2, compared to merely processing prompts

Why is LLM generation inefficient? 
(From the Medusa Paper)



Verification (Explained in Depth) Mitigating Batch Size

1. Instead of creating a batch for every new token, you can just append the new 
candidate tokens in the prompt and verify those tokens in one forward pass of 
the model.

2. Assuming your draft model gives candidate tokens y1:n  for the prompt x
3. Now during the forward pass, instead of just getting the last row of the 

attention layer, you take the last n rows where for row i, the last unmasked 
attention weight corresponds to the x+(n-1)th token.

4. Now the attention embeddings for each token can be sent to the LM head.
5. Each candidate token can now be verified. 



Prompt Lookup (Speedup is task dependent)

● In several LLM use cases where you're doing input grounded generation 
(summarization, document QA, multi-turn chat, code editing), there is high 
n-gram overlap between LLM input (prompt) and LLM output.

● This could be entity names, phrases, or code chunks that the LLM directly 
copies from the input while generating the output.

● In the next slide is the prompt lookup function used in hf generate.





Prompt Lookup in action

https://docs.google.com/file/d/1RKTWADNd0TzXwkxBJR1-F64-JoUAf7Zi/preview


Jacobi Decoding (Batched Decoding Process) (Inefficient)

1. Let’s say through a helper model you have n future tokens (y1 yn) for a given 
prefix x. 

2. Create a batch of size n with ith input in the batch being [x y 1:i-1]

3. Now pass the batch through the model.

4. The forward pass will generate the yi token assuming the previous generated 
tokens are correct.

5. If the first k tokens generated by the model match the candidate tokens, then 
the k+1 th token will also match the generated token.

6. So k tokens will be generated in 1 forward pass.



Lookahead Decoding (extended Jacobi Decoding)

● Guess and Verify Paradigm

● Initially randomly select the next k tokens as candidate tokens

● Create the causal mask and verify.

● Take tokens that matched in the generation 

● For the tokens that did not match create ngrams and put them in the a cache 
pool to be reused later (This creates the candidate tokens for the future).

● As more iterations take place, the random guesses become more useful 
ngrams that can be accepted in the future.





Streaming LLMs



Motivation

1. Eliminating the need for a draft model

2. Streamlining Fine Tuning of just a single model

3. End-to-end trainable single-model framework capable of simultaneously 
predicting the next token and speculating future tokens.

4. Speed Up the decoding Process



Main Modifications in the Paper

● Speculative Stream Design and Initialization

● Parallel Speculation

● Parallel Verification

● Parallel Tree Draft Pruning

● Modified Training Objective for future ngram prediction



Comparison with Speculative Decoding



Multi Stream Attention (From ProphetNet)



Speculative Stream Design and Initialisation

1. The main multi headed attention (MHA) of the model is the main stream. It’s 
output is used for predicting the next token

2. We have k additional attention layers in parallel with the main MHA, which are 
the speculative streams.

3. The output of these streams is used for predicting the future tokens, with 
stream i responsible for predicting yi  



Multi Stream Attention Initialisation

1. In the model, MSA is applied only 
to the last Ns layers of the 
Transformer.

2. Each stream j is initialised using the 
output of the main-stream from the 
previous Transformer block.

3. Pj is a positional embedding that 
incorporates a sense of position to 
the stream enabling it to predict the 
future token according to its 
position



Parallel Speculation

1. Now as we have the output from the attention layers from the main and 
speculative stream. 

2. We can use them to generate [y1 .. yk+1] where y1 is generated using the 
main-stream and the rest are generated using the speculative streams. 

3. In order to keep track of the generated speculations, instead of keeping the 
top 1 token from the speculated streams we keep the top k tokens from each 
stream in a Tree.



Tree Draft

1. Each Layer of the tree corresponds 
to the top k predictions for the 
corresponding stream.

2. Each path in the tree corresponds a 
viable candidate for verification.

3. The root of the tree is generated 
from the main-stream.

4. Edges of the tree correspond to the 
transition probability from parent to 
child token.



Parallel Verification



Attention Mask For Tree Draft

1. Tree Draft is flattened and the 
attention mask is set in such a way 
that the children attend to all its 
predecessors.

2. Now since we have the output for 
the attention for the future token we 
can feed it to the LM Head and get 
the next token, hence verifying 
multiple candidates simultaneously.



Tree Draft Pruning

1. One issue with tree draft is that every permutation of k tokens sampled from a 
stream is a viable candidate.

2. As the batch size containing candidates for verification increases the verification 
starts becoming compute bound.

3. We need to prune the Tree Draft to reduce the batch size.

4. Some tokens from the tree are removed based on the transition probability between 
the parent and the immediate child token.

5. To estimate the transition probability we get the hidden state output from an early 
Transformer layer (just before MSA) and pass it through a low rank linear 
transformation and use the LM Head to get the probability distribution which can be 
used to calculate the transition probability.



Training Objective

1. Along with the next token prediction 
training objective we also minimize 
the log probability for the future 
n-grams obtained using MSA.



Results

Comparisons are made using the following models:

1. OPT 1.3B, 6.7B with OPT 125m as draft for speculative decoding

2. Phi 1.3B

3. Open-Llama 7B

Additionally the following methods are compared against:

1. Baseline (Standard Autoregressive decoding)

2. Medusa

3. Speculative Decoding



Results
1. Metric used for generation 

quality is

a. Exact Match for 
SqlContext

b. Rouge1/RougeLSum 
for DialogSum and 
E2E-NLG



Wall Time Latency Comparison



Analysis (Kernel and Memory Utilisation)

High Kernel 
Utilisation is Good

Low Memory 
Utilisation is Good



Analysis (Speed up comparison with Draft-Target SD)

ζ   = No. of decoding tokens advanced 
during verification

β  = No. of tokens advanced in 
Speculative Streaming



Analysis (Speed up and Tree Pruning as Tokens increase)



Metric Improvement with Number of MSA layers



Medusa



Medusa (Main steps)

● Extend the original model to predict future tokens

● This is done by using extra LM Heads (Medusa Heads)

● The next tokens are verified in one pass using Tree Attention Mask

● The Medusa heads can be trained alone or in conjunction with the base model

● During inference, each head generates multiple top predictions for its designated 
position. These predictions are assembled into candidates and processed in parallel 
using a tree-based attention mechanism. 

● The final step involves utilizing a typical acceptance scheme to select reasonable 
continuations, and the longest accepted candidate prefix will be used for the next 
decoding phase.



Layer Skip

[2404.16710] Layer Skip: Enabling Early Exit Inference and Self-Speculative Decoding 

https://arxiv.org/abs/2404.16710


Layer Skip

[2404.16710] Layer Skip: Enabling Early Exit Inference and Self-Speculative Decoding 

https://arxiv.org/abs/2404.16710


TriForce

[2404.11912] TriForce: Lossless Acceleration of Long Sequence Generation with Hierarchical Speculative Decoding 

https://arxiv.org/abs/2404.11912


BASS: Batched Attention-optimized Speculative Sampling

[2404.15778] BASS: Batched Attention-optimized Speculative Sampling 

Figure 4: Attention calculation in BASS: (a) Attention compute flow, (b) 
BASS-PAD launches one kernel for QK GEMM and one kernel for PV GEMM 
by padding the K, V and P tensors to the maximum sequence length across 
the batch, and (c) BASS-SPLIT launches one kernel per sequence and 
thereby accommodates variable sequence lengths.

https://arxiv.org/abs/2404.15778


THANK YOU 

Questions??



1. Medusa Paper: https://arxiv.org/abs/2401.10774
2. Medusa Repo: https://github.com/FasterDecoding/Medusa
3. Speculative Streaming Paper: https://arxiv.org/abs/2402.11131
4. Lookahead Decoding Paper: https://arxiv.org/abs/2402.02057
5. Lookahead Decoding Repo: https://github.com/hao-ai-lab/LookaheadDecoding
6. PromptLookup Repo: https://github.com/apoorvumang/prompt-lookup-decoding
7. Nanogpt Repo: https://github.com/karpathy/nanoGPT
8. ProphetNet Paper: https://arxiv.org/abs/2001.04063
9. HuggingFace Assisted Generation Blog : 

https://huggingface.co/blog/assisted-generation
10. Accelerating Generative AI with PyTorch II: GPT, Fast 
11. At the Intersection of LLMs and Kernels - Research Roundup 

Additional Links

https://arxiv.org/abs/2401.10774
https://github.com/FasterDecoding/Medusa
https://arxiv.org/abs/2402.11131
https://arxiv.org/abs/2402.02057
https://github.com/hao-ai-lab/LookaheadDecoding
https://github.com/apoorvumang/prompt-lookup-decoding
https://github.com/karpathy/nanoGPT
https://arxiv.org/abs/2001.04063
https://huggingface.co/blog/assisted-generation
https://pytorch.org/blog/accelerating-generative-ai-2/
https://charlesfrye.github.io/programming/2023/11/10/llms-systems.html

