
GenAI Talk: Episode 1

Assisted Generation:
Speeding up LLM inference

Sudhanshu Mishra
Shubhanshu Mishra

Large Language Models

We will mostly be talking
about Decoder only
Models like LLama,

Mistral, GPT …

Causal Self Attention

Nano GPT (Andrej Karpathy)

Causal Attention in Action

1 2 3 4
Tokens Generated so far

x

 prompt 1

1 2

1 2

1 2

3

3 4

x

x

x

x

1 2 3 4x

1

2

3

4

1

2

3

4

Query

Key

Token
Embedding
for LM Head

Final Step in the generation Process

LM HEAD

t1

t2

…

tn-1

tn

Token embedding
after attention

Probability
Distribution over

vocabulary

Major Challenge of LLM Inference

At inference time, the model generates one token at a time, this doesn’t allow
us to use the multi token computation speedups given by GPUs.

Source: In the Fast Lane! Speculative Decoding — 10x Larger Model, No Extra Cost | by TitanML | Medium

https://medium.com/@TitanML/in-the-fast-lane-speculative-decoding-10x-larger-model-no-extra-cost-f33ea39d065a

Speculative Decoding

Source: In the Fast Lane! Speculative Decoding — 10x Larger Model, No Extra Cost | by TitanML | Medium

https://medium.com/@TitanML/in-the-fast-lane-speculative-decoding-10x-larger-model-no-extra-cost-f33ea39d065a

Speculative Decoding

1. Main Concept behind Speculative Decoding is having candidate tokens
for future positions and verifying them in a single forward pass parallely.

2. Trading off Compute for more tokens in a single step.

3. Usually requires a Draft Model that provides the candidate tokens quickly

4. Common Rule of thumb is to use a Draft Model that is at least 3x faster
than the target model

5. For best acceptance of the candidate and speedup, the draft model
should be fine tuned aligning with the target model

Verification in Action

1 2 3 4

Candidate tokens

x

 prompt 1

1 2

1 2

1 2

3

3 4

x

x

x

x

1 2 3 4x

1

2

3

4

1

2

3

4

Query

Key

Token
Embedding
for LM Head

● Generation follows a memory-bound computational pattern

● Main latency bottleneck arises from memory reads/writes rather than
arithmetic computations due to the inherently sequential nature of the
autoregressive decoding process

● A common mitigation for this inefficiency was to simply increase the batch
size, enabling the parallel production of more tokens

● Increasing the batch size in this context not only introduces higher latency
but also substantially inflates the memory requirements for the Transformer
model's key-value cache

● As of September 2023, generation costs approximately 2x higher for GPT-4
and roughly 3x for Claude 2, compared to merely processing prompts

Why is LLM generation inefficient?
(From the Medusa Paper)

Verification (Explained in Depth) Mitigating Batch Size

1. Instead of creating a batch for every new token, you can just append the new
candidate tokens in the prompt and verify those tokens in one forward pass of
the model.

2. Assuming your draft model gives candidate tokens y1:n for the prompt x
3. Now during the forward pass, instead of just getting the last row of the

attention layer, you take the last n rows where for row i, the last unmasked
attention weight corresponds to the x+(n-1)th token.

4. Now the attention embeddings for each token can be sent to the LM head.
5. Each candidate token can now be verified.

Prompt Lookup (Speedup is task dependent)

● In several LLM use cases where you're doing input grounded generation
(summarization, document QA, multi-turn chat, code editing), there is high
n-gram overlap between LLM input (prompt) and LLM output.

● This could be entity names, phrases, or code chunks that the LLM directly
copies from the input while generating the output.

● In the next slide is the prompt lookup function used in hf generate.

Prompt Lookup in action

https://docs.google.com/file/d/1RKTWADNd0TzXwkxBJR1-F64-JoUAf7Zi/preview

Jacobi Decoding (Batched Decoding Process) (Inefficient)

1. Let’s say through a helper model you have n future tokens (y1 yn) for a given
prefix x.

2. Create a batch of size n with ith input in the batch being [x y 1:i-1]

3. Now pass the batch through the model.

4. The forward pass will generate the yi token assuming the previous generated
tokens are correct.

5. If the first k tokens generated by the model match the candidate tokens, then
the k+1 th token will also match the generated token.

6. So k tokens will be generated in 1 forward pass.

Lookahead Decoding (extended Jacobi Decoding)

● Guess and Verify Paradigm

● Initially randomly select the next k tokens as candidate tokens

● Create the causal mask and verify.

● Take tokens that matched in the generation

● For the tokens that did not match create ngrams and put them in the a cache
pool to be reused later (This creates the candidate tokens for the future).

● As more iterations take place, the random guesses become more useful
ngrams that can be accepted in the future.

Streaming LLMs

Motivation

1. Eliminating the need for a draft model

2. Streamlining Fine Tuning of just a single model

3. End-to-end trainable single-model framework capable of simultaneously
predicting the next token and speculating future tokens.

4. Speed Up the decoding Process

Main Modifications in the Paper

● Speculative Stream Design and Initialization

● Parallel Speculation

● Parallel Verification

● Parallel Tree Draft Pruning

● Modified Training Objective for future ngram prediction

Comparison with Speculative Decoding

Multi Stream Attention (From ProphetNet)

Speculative Stream Design and Initialisation

1. The main multi headed attention (MHA) of the model is the main stream. It’s
output is used for predicting the next token

2. We have k additional attention layers in parallel with the main MHA, which are
the speculative streams.

3. The output of these streams is used for predicting the future tokens, with
stream i responsible for predicting yi

Multi Stream Attention Initialisation

1. In the model, MSA is applied only
to the last Ns layers of the
Transformer.

2. Each stream j is initialised using the
output of the main-stream from the
previous Transformer block.

3. Pj is a positional embedding that
incorporates a sense of position to
the stream enabling it to predict the
future token according to its
position

Parallel Speculation

1. Now as we have the output from the attention layers from the main and
speculative stream.

2. We can use them to generate [y1 .. yk+1] where y1 is generated using the
main-stream and the rest are generated using the speculative streams.

3. In order to keep track of the generated speculations, instead of keeping the
top 1 token from the speculated streams we keep the top k tokens from each
stream in a Tree.

Tree Draft

1. Each Layer of the tree corresponds
to the top k predictions for the
corresponding stream.

2. Each path in the tree corresponds a
viable candidate for verification.

3. The root of the tree is generated
from the main-stream.

4. Edges of the tree correspond to the
transition probability from parent to
child token.

Parallel Verification

Attention Mask For Tree Draft

1. Tree Draft is flattened and the
attention mask is set in such a way
that the children attend to all its
predecessors.

2. Now since we have the output for
the attention for the future token we
can feed it to the LM Head and get
the next token, hence verifying
multiple candidates simultaneously.

Tree Draft Pruning

1. One issue with tree draft is that every permutation of k tokens sampled from a
stream is a viable candidate.

2. As the batch size containing candidates for verification increases the verification
starts becoming compute bound.

3. We need to prune the Tree Draft to reduce the batch size.

4. Some tokens from the tree are removed based on the transition probability between
the parent and the immediate child token.

5. To estimate the transition probability we get the hidden state output from an early
Transformer layer (just before MSA) and pass it through a low rank linear
transformation and use the LM Head to get the probability distribution which can be
used to calculate the transition probability.

Training Objective

1. Along with the next token prediction
training objective we also minimize
the log probability for the future
n-grams obtained using MSA.

Results

Comparisons are made using the following models:

1. OPT 1.3B, 6.7B with OPT 125m as draft for speculative decoding

2. Phi 1.3B

3. Open-Llama 7B

Additionally the following methods are compared against:

1. Baseline (Standard Autoregressive decoding)

2. Medusa

3. Speculative Decoding

Results
1. Metric used for generation

quality is

a. Exact Match for
SqlContext

b. Rouge1/RougeLSum
for DialogSum and
E2E-NLG

Wall Time Latency Comparison

Analysis (Kernel and Memory Utilisation)

High Kernel
Utilisation is Good

Low Memory
Utilisation is Good

Analysis (Speed up comparison with Draft-Target SD)

ζ = No. of decoding tokens advanced
during verification

β = No. of tokens advanced in
Speculative Streaming

Analysis (Speed up and Tree Pruning as Tokens increase)

Metric Improvement with Number of MSA layers

Medusa

Medusa (Main steps)

● Extend the original model to predict future tokens

● This is done by using extra LM Heads (Medusa Heads)

● The next tokens are verified in one pass using Tree Attention Mask

● The Medusa heads can be trained alone or in conjunction with the base model

● During inference, each head generates multiple top predictions for its designated
position. These predictions are assembled into candidates and processed in parallel
using a tree-based attention mechanism.

● The final step involves utilizing a typical acceptance scheme to select reasonable
continuations, and the longest accepted candidate prefix will be used for the next
decoding phase.

Layer Skip

[2404.16710] Layer Skip: Enabling Early Exit Inference and Self-Speculative Decoding

https://arxiv.org/abs/2404.16710

Layer Skip

[2404.16710] Layer Skip: Enabling Early Exit Inference and Self-Speculative Decoding

https://arxiv.org/abs/2404.16710

TriForce

[2404.11912] TriForce: Lossless Acceleration of Long Sequence Generation with Hierarchical Speculative Decoding

https://arxiv.org/abs/2404.11912

BASS: Batched Attention-optimized Speculative Sampling

[2404.15778] BASS: Batched Attention-optimized Speculative Sampling

Figure 4: Attention calculation in BASS: (a) Attention compute flow, (b)
BASS-PAD launches one kernel for QK GEMM and one kernel for PV GEMM
by padding the K, V and P tensors to the maximum sequence length across
the batch, and (c) BASS-SPLIT launches one kernel per sequence and
thereby accommodates variable sequence lengths.

https://arxiv.org/abs/2404.15778

THANK YOU

Questions??

1. Medusa Paper: https://arxiv.org/abs/2401.10774
2. Medusa Repo: https://github.com/FasterDecoding/Medusa
3. Speculative Streaming Paper: https://arxiv.org/abs/2402.11131
4. Lookahead Decoding Paper: https://arxiv.org/abs/2402.02057
5. Lookahead Decoding Repo: https://github.com/hao-ai-lab/LookaheadDecoding
6. PromptLookup Repo: https://github.com/apoorvumang/prompt-lookup-decoding
7. Nanogpt Repo: https://github.com/karpathy/nanoGPT
8. ProphetNet Paper: https://arxiv.org/abs/2001.04063
9. HuggingFace Assisted Generation Blog :

https://huggingface.co/blog/assisted-generation
10. Accelerating Generative AI with PyTorch II: GPT, Fast
11. At the Intersection of LLMs and Kernels - Research Roundup

Additional Links

https://arxiv.org/abs/2401.10774
https://github.com/FasterDecoding/Medusa
https://arxiv.org/abs/2402.11131
https://arxiv.org/abs/2402.02057
https://github.com/hao-ai-lab/LookaheadDecoding
https://github.com/apoorvumang/prompt-lookup-decoding
https://github.com/karpathy/nanoGPT
https://arxiv.org/abs/2001.04063
https://huggingface.co/blog/assisted-generation
https://pytorch.org/blog/accelerating-generative-ai-2/
https://charlesfrye.github.io/programming/2023/11/10/llms-systems.html

