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Causal Self Attention

Attention weight between the tokens
corresponding to “Life” and “short”
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Nano GPT (Andrej Karpathy)

@torch.no grad()
generate(self, idx, max new tokens, temperature=1.0, top k=N

=(max_new tokens):

idx cond idx if idx.size(1l) <= self.config.block size else idx[:, -self.config.block size:]
logits, = self(idx cond)
logits = logits[:, -1, :] / temperature
if top k i ¢ -

v, = torch.topk(logits, min(top k, logits.size(-1)))

logits[logits < v[:, [-1]]] = -float('Inf')
probs = F.softmax(logits, dim=-1)

idx next = torch.multinomial(probs, num samples=1)

idx = torch.cat((idx, idx next), dim=1)




Causal Attention in Action
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Final Step in the generation Process
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Major Challenge of LLM Inference

At inference time, the model generates one token at a time, this doesn'’t allow
us to use the multi token computation speedups given by GPUs.

— “The orange cat ate”
— “The orange cat ate my”
— “The orange cat ate my dinner”
— “The orange cat ate my dinner !”

“The orange cat” =——p>
“The orange cat ate” =—p>

“The orange cat ate my” ——p
“The orange cat ate my dinner” =———p Tita

Large Language Modk

Source: In the Fast Lane! Speculative Decoding — 10x Larger Model, No Extra Cost | by TitanML | Medium



https://medium.com/@TitanML/in-the-fast-lane-speculative-decoding-10x-larger-model-no-extra-cost-f33ea39d065a

Speculative Decoding
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Source: In the Fast Lane! Speculative Decoding — 10x Larger Model, No Extra Cost | by TitanML | Medium



https://medium.com/@TitanML/in-the-fast-lane-speculative-decoding-10x-larger-model-no-extra-cost-f33ea39d065a

Speculative Decoding

1. Main Concept behind Speculative Decoding is having candidate tokens
for future positions and verifying them in a single forward pass parallely.

2. Trading off Compute for more tokens in a single step.
3. Usually requires a Draft Model that provides the candidate tokens quickly

4. Common Rule of thumb is to use a Draft Model that is at least 3x faster
than the target model

5. For best acceptance of the candidate and speedup, the draft model
should be fine tuned aligning with the target model



Verification in Action
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Why is LLM generation inefficient?
(From the Medusa Paper)

e Generation follows a memory-bound computational pattern

e Main latency bottleneck arises from memory reads/writes rather than
arithmetic computations due to the inherently sequential nature of the
autoregressive decoding process

e A common mitigation for this inefficiency was to simply increase the batch
size, enabling the parallel production of more tokens

e Increasing the batch size in this context not only introduces higher latency
but also substantially inflates the memory requirements for the Transformer
model's key-value cache

e As of September 2023, generation costs approximately 2x higher for GPT-4
and roughly 3x for Claude 2, compared to merely processing prompts



Verification (Explained in Depth) Mitigating Batch Size

1.

Instead of creating a batch for every new token, you can just append the new
candidate tokens in the prompt and verify those tokens in one forward pass of
the model.

Assuming your draft model gives candidate tokens y,. for the prompt x

Now during the forward pass, instead of just getting the last row of the
attention layer, you take the last n rows where for row i, the last unmasked
attention weight corresponds to the x+(n-1)th token.

Now the attention embeddings for each token can be sent to the LM head.
Each candidate token can now be verified.



Prompt Lookup (Speedup is task dependent)

e In several LLM use cases where you're doing input grounded generation
(summarization, document QA, multi-turn chat, code editing), there is high
n-gram overlap between LLM input (prompt) and LLM output.

e This could be entity names, phrases, or code chunks that the LLM directly
copies from the input while generating the output.

e In the next slide is the prompt lookup function used in hf generate.



def find_candidate_pred_tokens(input_ids, max_ngram_size=3, num_pred_tokens=10):
input_length = input_ids.size(1)

for ngram_size in range(max_ngram_size, 0, -1):
# Extract the last n tokens as our search ngram
ngram = input_ids[@, -ngram_size:].tolist()

# Create sliding windows of size ngram_size
windows = input_ids.unfold(dimension=1, size=ngram_size, step=1)

# Convert ngram to a tensor for comparison
ngram_tensor = torch.tensor(ngram, device=input_ids.device).unsqueeze(0)

# Find where the windows match the ngram
matches = (windows == ngram_tensor).all(dim=2)

# Get the indices of matches
match_indices = matches.nonzero(as_tuple=True) [1]

# Iterate through match indices to find a valid continuation
for idx in match_indices:
start_idx = idx + ngram_size
end_idx = start_idx + num_pred_tokens
# Ensure we don't go beyond the length of input_ids and avoid self-match
if end_idx <= input_length and start_idx < input_length - ngram_size:
return input_ids[@, start_idx:end_idx]

# If no match is found, return an empty tensor
return torch.tensor([], dtype=torch.long, device=input_ids.device)




Prompt Lookup in action



https://docs.google.com/file/d/1RKTWADNd0TzXwkxBJR1-F64-JoUAf7Zi/preview

Jacobi Decoding (Batched Decoding Process) (Inefficient)

1.

Let's say through a helper model you have n future tokens (y, y_) for a given
prefix X.

Create a batch of size n with i" input in the batch being [x y pia)
Now pass the batch through the model.

The forward pass will generate the y. token assuming the previous generated
tokens are correct.

If the first k tokens generated by the model match the candidate tokens, then
the k+1 th token will also match the generated token.

So k tokens will be generated in 1 forward pass.



Lookahead Decoding (extended Jacobi Decoding)

e Guess and Verify Paradigm

e Initially randomly select the next k tokens as candidate tokens
e Create the causal mask and verify.
e Take tokens that matched in the generation

e For the tokens that did not match create ngrams and put them in the a cache
pool to be reused later (This creates the candidate tokens for the future).

e As more iterations take place, the random guesses become more useful
ngrams that can be accepted in the future.
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Figure 2: (a) Causal mask for decoder models. (b) Attention
mask for LOOKAHEAD DECODING with W =5, N = 4,
and G = 2. Digits on tokens indicate relative positions.



Streaming LLMs
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Motivation

1. Eliminating the need for a draft model
2. Streamlining Fine Tuning of just a single model

3. End-to-end trainable single-model framework capable of simultaneously
predicting the next token and speculating future tokens.

4. Speed Up the decoding Process



Main Modifications in the Paper

e Speculative Stream Design and Initialization
e Parallel Speculation

e Parallel Verification

e Parallel Tree Draft Pruning

e Modified Training Objective for future ngram prediction



Comparison with Speculative Decoding
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Multi Stream Attention (From ProphetNet)
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Figure 2: N-stream self-attention mechanism which contains a main stream self-attention and n predicting stream
self-attention. For simplicity sake, we take 2-stream self-attention (n = 2) as an example here. Figure (a) presents
the attention process of the main stream self-attention. Figure (b) and Figure (c) show the attention process of 1-st
predicting stream and 2-nd predicting stream, respectively.




Speculative Stream Design and Initialisation

1. The main multi headed attention (MHA) of the model is the main stream. It’s
output is used for predicting the next token

2. We have k additional attention layers in parallel with the main MHA, which are
the speculative streams.

3. The output of these streams is used for predicting the future tokens, with
stream i responsible for predicting y.



In the model, MSA is applied only
to the last Ns layers of the
Transformer.

Each stream j is initialised using the
output of the main-stream from the
previous Transformer block.

P is a positional embedding that
mcorporates a sense of position to
the stream enabling it to predict the
future token according to its
position

Multi Stream Attention Initialisation

M+t = MHA(MF, M%,, ME,) (1)

Si;tt = MHA(S;, M, © Si<;), M, ® Si(<;)) ()

Ng < N. Specifically, stream j at time ¢ is initialized at

layer N — N as,

Sy N = La(MTN) + P 3)

where P; is a stream identifier embedding that embeds a
sense of relative position into streams and distinguishes
the computation from main stream. f, is a linear transfor-
mation of rank 7 to transform main stream hidden states
into speculative stream hidden states. This initialization
helps to reduce computation per forward pass, since only
the main stream needs to be passed through N — N layers,




Parallel Speculation

1.

Now as we have the output from the attention layers from the main and
speculative stream.

We can use them to generate [y, .. y,,.] where y, is generated using the
main-stream and the rest are generated using the speculative streams.

In order to keep track of the generated speculations, instead of keeping the
top 1 token from the speculated streams we keep the top k tokens from each
stream in a Tree.



Tree Draft
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Parallel Verification
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Attention Mask For Tree Draft

1. Tree Draft is flattened and the
attention mask is set in such a way

that the children attend to all its

predecessors.

2. Now since we have the output for
the attention for the future token we

can feed it to the LM Head and get

the next token, hence verifying
multiple candidates simultaneously.




Tree Draft Pruning

1.

One issue with tree draft is that every permutation of k tokens sampled from a
stream is a viable candidate.

As the batch size containing candidates for verification increases the verification
starts becoming compute bound.

We need to prune the Tree Draft to reduce the batch size.

Some tokens from the tree are removed based on the transition probability between
the parent and the immediate child token.

To estimate the transition probability we get the hidden state output from an early
Transformer layer (just before MSA) and pass it through a low rank linear
transformation and use the LM Head to get the probability distribution which can be
used to calculate the transition probability.



Training Obijective

1.

Along with the next token prediction
training objective we also minimize
the log probability for the future
n-grams obtained using MSA.

T
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Results

Comparisons are made using the following models:
1. OPT 1.3B, 6.7B with OPT 125m as draft for speculative decoding

2. Phi1.3B
3. Open-Llama 7B

Additionally the following methods are compared against:

1. Baseline (Standard Autoregressive decoding)

2. Medusa

3. Speculative Decoding



Results

1. Metric used for generation
quality is

a. Exact Match for
SqlContext

b. Rouge1/RougelLSum
for DialogSum and
E2E-NLG

Table 1. Walltime speedup, CR ratio, parameter overhead, and Metric comparison using different models fine-tuned on downstream
applications. CR ratio denotes acceleration agnostic target model call reduction ratio. We use exact match accuracy as a metric for
SqlContext, and Rouge1/RougeLSum as a metric for Dialogsum and E2E-NLG tasks.

Dataset Model Method  SpeedUp () CR Ratio (1) Metric (1) # Extra Parameters ({)
Baseline 1.00 1.00 84.98 =
OPT-1.3b Medusa 2.07 2.79 84.98 4.28E8
SS (ours) 2.39 3.57 87.40 4.096 E4
Baseline 1.00 1.00 88.71 -
SqlContext PHI-1.3b Medusa 2.58 3.25 88.71 4.36E8
SS (ours) 2.62 3.53 89.90 4.096 E4
Baseline 1.00 1.00 89.88 -~
OpenLlama-7b | Medusa 3.20 4.10 90.11 5.91E8
SS (ours) 3.14 4.13 91.70 8.19F4
Baseline 1.00 1.00 43.40/35.56 —
OPT-1.3b Medusa 1.56 1.91 43.40/35.50 4.28E8
SS (ours) 1.94 2.62 44.07/35.99 4.096 E4
Baseline 1.00 1.00 43.57/35.60 —
DialogSum PHI-1.3b Medusa 1.89 2.28 43.57/35.60 4.36 E8
SS (ours) 1.83 2.34 43.36/35.31 4.096 £4
Baseline 1.00 1.00 44.20/36.50 —
OpenLlama-7b | Medusa 1.76 2.25 44.20/36.50 5.91E8
SS (ours) 1.87 2.51 43.92/35.70 8.19F4
Baseline 1.00 1.00 69.48/50.17 —
OPT-1.3b Medusa 2.13 2.95 69.48/50.17 4.28E8
SS (ours) 2.45 3.72 69.32/50.51 4.096 E4
Baseline 1.00 1.00 67.90/48.50 —
E2E-NLG PHI-1.3b Medusa 2.78 3.35 67.90/48.50 4.36 E8
SS (ours) 2.84 3.69 67.40/48.52 4.096 E4
Baseline 1.00 1.00 69.50/50.30 —
OpenLlama-7b | Medusa 2.70 3.22 69.50/50.30 5.91E8
SS (ours) 2.96 3.55 68.66/49.56 8.19F4




Wall Time Latency Comparison

Table 2. Walltime latency (per sample) comparison with standard draft-target based speculative decoding approach using OPT-125m as
the draft model for v = 4. Although calls to target model using our approach are higher than draft-model-based speculative decoding,
it does not incur auto-regressive drafting overhead, achieving better latency on OPT-1.3b and OPT-6.7b models. We use exact match
accuracy as a metric for SqlContext, while Rougel/RougeL.Sum is used as a metric for Dialogsum and E2E-NLG tasks.

Dataset Target Method Target calls Draft Calls Walltime Latency (ms, |) Metric (1)

Two-model SD 6.59 22.35 269.24 84.98
SqlContext OPT-1.3b SS (ours) 7.79 0 133.48 87.40
OPT-6.7b Two-model SD 6.60 22.41 301.10 89.13
' SS (ours) 6.88 0 157.04 89.34

OPT.13b Two-model SD 11.65 42.59 493.59 43.40/35.60

Diglisgsun SS (ours) 13.41 0 248.26 44.07/35.99

OPT-6.7b Two-model SD 12.15 35.76 555.99 44.40/36.60

SS (ours) 14.39 0 442.83 44.30/36.30

OPT-1.3b Two-model SD 8.86 31.47 345.72 69.48/50.17

E2E-NLG SS (ours) 9.80 0 164.23 69.32/50.51

OPT-6.7b Two-model SD 8.90 31.58 412.02 69.34/49.88

SS (ours) 10.26 0 243.62 69.07/49.69




Analysis (Kernel and Memory Utilisation)
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Figure 3. Speculative Streaming speeds up decoding by increasing
arithmetic intensity of memory bound auto-regressive decoding
step. Kernel and memory utilization of OPT-1.3b model with
Medusa-style approach and draft model (OPT-125m) based specu-
lative decoding approach is also shown for comparison.




Analysis (Speed up comparison with Draft-Target SD)

¢ = No. of decoding tokens advanced
during verification

B = No. of tokens advanced in
Speculative Streaming
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Figure 4. Speculative Streaming speedup over draft-based specu-
lative decoding for different (/3 and target/draft latency ratios,
where ¢ denotes the number of advancements per verification step
for draft-based speculative decoding while 3 denotes the same for
Speculative Streaming.




Analysis (Speed up and Tree Pruning as Tokens increase)

-~ Without Pruning -«-With Pruning

Walltime Speedup

Figure 5. As more tokens (k) are sampled from each stream keep-
ing -y fixed for the creation of a tree draft, walltime speedup in-
creases due to the increased number of candidates. This trend
reverses as k continues to increase and the model transits into the
compute-bound phase. Pruning less probable paths from tree draft
helps to reduce compute for higher values of k£ thereby reducing
latency per forward pass and offering more speedup.




Metric Improvement with Number of MSA layers
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Figure 6. As the number of multi-stream attention layers increases,
metrics on downstream tasks improve as well. We use RougeLSum
as the metric for the Dialogsum task, and Exact Match (EM)
accuracy as the metric for the ContextSQL task.




Medusa
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Medusa (Main steps)

e Extend the original model to predict future tokens

e This is done by using extra LM Heads (Medusa Heads)
e The next tokens are verified in one pass using Tree Attention Mask
e The Medusa heads can be trained alone or in conjunction with the base model

e During inference, each head generates multiple top predictions for its designated
position. These predictions are assembled into candidates and processed in parallel
using a tree-based attention mechanism.

e The final step involves utilizing a typical acceptance scheme to select reasonable
continuations, and the longest accepted candidate prefix will be used for the next
decoding phase.
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Figure1 Overview of our end-to-end solution, LayerSkip, showing its 3 components.

2404.16710] Layer Skip: Enabling Early Exit Inference and Self-Speculative Decodin



https://arxiv.org/abs/2404.16710
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https://arxiv.org/abs/2404.16710
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Figure 1: Left: TRIFORCE employs retrieval-based drafting and hierarchical speculation to effectively address
the dual bottlenecks. It integrates two models and three caches, comprising a draft model, a target model, and
a StreamingLLM cache for the draft model, alongside a retrieval cache and a full cache for the target model.
The process initiates by repeatedly drafting for 7, steps, assisting the target model with retrieved partial KV
cache in generating over 7, tokens, which will be further verified by the target model using full KV cache.
Right: Evaluating the Llama2-7B-128K on a needle retrieval task indicates that KV cache eviction-based
methods, such as StreamingLLLM, require a trade-off between latency and accuracy. In contrast, our TRIFORCE
successfully maintains low latency without sacrificing accuracy.

[2404.11912] TriForce: Lossless Acceleration of Long Sequence Generation with Hierarchical Speculative Decoding



https://arxiv.org/abs/2404.11912

BASS: Batched Attention-optimized Speculative Sampling
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(c) BASS-SPLIT

Parallel GEMMS

Algorithm 1 A heuristic to adjust draft length

larate < lo
s+ 0
for each speculative decoding step do
z1,- -+ ,xp < numbers of accepted tokens
if max (1‘1, cee ,Ib) = ldrafe then
ldrafe +— min (ldraft + lincre, llimit)
s+ 0
else
laratt < larafe — “draft/lmod} - S
larate < max (1,1, -+ , Tp, larats)
s+ 1
end if
end for

Figure 4: Attention calculation in BASS: (a) Attention compute flow, (b)
BASS-PAD launches one kernel for QK GEMM and one kernel for PV GEMM
by padding the K, V and P tensors to the maximum sequence length across
the batch, and (c) BASS-SPLIT launches one kernel per sequence and
thereby accommodates variable sequence lengths.


https://arxiv.org/abs/2404.15778

THANK YOU

Questions??



Additional Links

©Co~NoOO~WDN =

11.

Medusa Paper: https://arxiv.org/abs/2401.10774

Medusa Repo: https://github.com/FasterDecoding/Medusa

Speculative Streaming Paper: https://arxiv.org/abs/2402.11131

Lookahead Decoding Paper: https://arxiv.org/abs/2402.02057

Lookahead Decoding Repo: https://github.com/hao-ai-lab/LookaheadDecoding
PromptLookup Repo: https://github.com/apoorvumang/prompt-lookup-decoding
Nanogpt Repo: https://github.com/karpathy/nanoGPT

ProphetNet Paper: https://arxiv.org/abs/2001.04063

HuggingFace Assisted Generation Blog :
https://huggingface.co/blog/assisted-generation

Accelerating Generative Al with PyTorch |l: GPT, Fast

At the Intersection of LLMs and Kernels - Research Roundup
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