Contextual Language Models: Using Spatio-temporal and Social Context to improve Language Models

Shubhanshu Mishra

(work done during PhD at UIUC and with collaborators at Twitter) All views are my own and do not represent the views of my past and current employers.

Key Papers

- Jinning Li, Shubhanshu Mishra, Ahmed El-Kishky, Sneha Mehta, and Vivek Kulkarni. 2022. <u>NTULM:</u> <u>Enriching Social Media Text Representations with Non-Textual Units</u>. In Proceedings of the Eighth Workshop on Noisy User-generated Text (W-NUT 2022), pages 69–82, Gyeongju, Republic of Korea. Association for Computational Linguistics.
- Vivek Kulkarni, Shubhanshu Mishra, and Aria Haghighi. 2021. <u>LMSOC: An Approach for Socially</u> <u>Sensitive Pretraining</u>. In Findings of the Association for Computational Linguistics: EMNLP 2021, pages 2967–2975, Punta Cana, Dominican Republic. Association for Computational Linguistics.
- Mishra, Shubhanshu. 2020. "Information Extraction from Digital Social Trace Data with Applications to Social Media and Scholarly Communication Data." University of Illinois at Urbana-Champaign. <u>https://shubhanshu.com/phd_thesis/</u>
- Mishra, S., & Diesner, J. (2018, July 3). Detecting the Correlation between Sentiment and User-level as well as Text-Level Meta-data from Benchmark Corpora. Proceedings of the 29th on Hypertext and Social Media. HT '18: 29th ACM Conference on Hypertext and Social Media. <u>https://doi.org/10.1145/3209542.3209562</u>

Language Modeling and Representation Learning

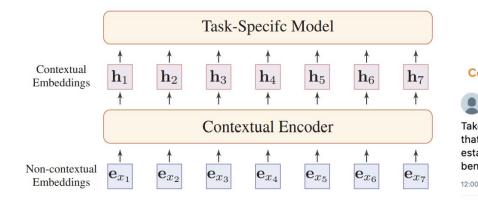
Text = [The, cat, sat, on, the, mat]

Goal: f(text) = P(text) ← Language Modeling Objective or f(text) = score(text) s.t. score(good text) > score(bad text) ← Contrastive Objective

Hypothesis:

If we can learn a good *f(text)*, we can use it to improve our performance on downstream tasks *g(f(text))* = *y* or to generate or complete text.

Application of language models



Famous ML Researcher 1 V @ml research 1 Query Wear a mask and test at scale! Tweet 12:00 PM · Jun 1, 2020 Q 11 O 1 **Content-Based Candidate Collaborative Filtering Candidate** Famous ML Research 2 V Trusted COVID Expert @ml research 2 @covid expert Take a look at my latest preprint showing Research from XYZ institute shows that that XYZ learning techniques wearing mask in public reduce COVID establishing a new SOTA on ABC transmission rate by X%! link to article.com benchmark task https://arxiv.org/... 12:00 PM · Jun 1, 2020 12:00 PM · Jun 1, 2020 0 0 1J \heartsuit 0 17 ≏

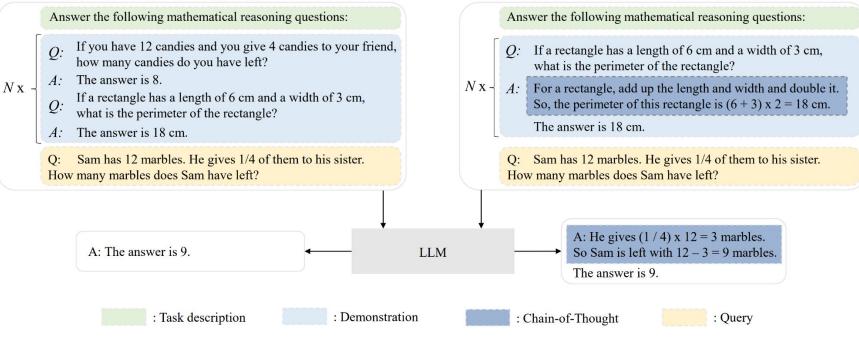
Content Recommendation

1

V

Application of generative language models

In-Context Learning



Chain-of-Thought Prompting

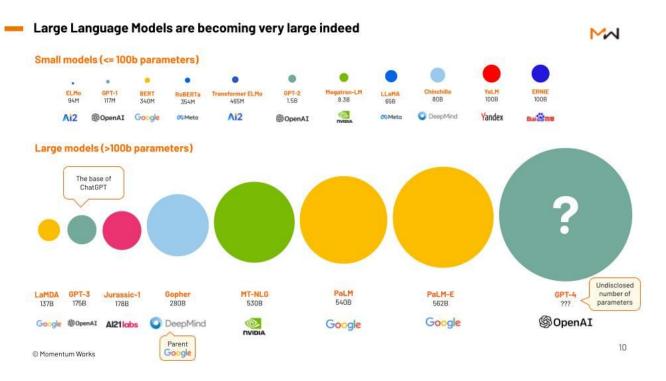
Language Modeling - Old to New

n-gram Word2Vec RNN LSTM

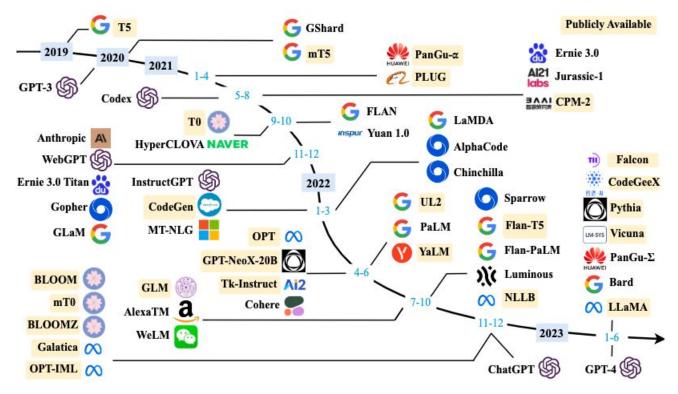
ELMo BERT GPT T5

ChatGPT LLaMA RWKV-LM

State of Language Modeling



Recent history of Language Models



Scaling Laws

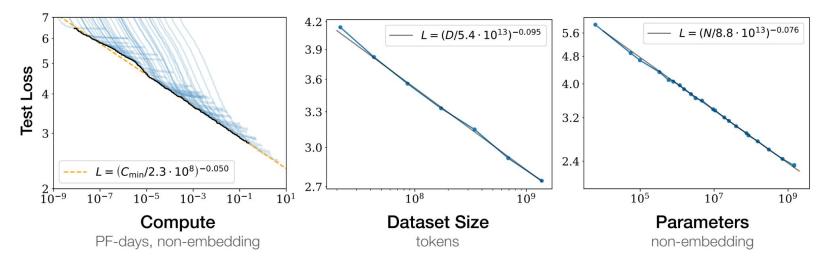


Figure 1 Language modeling performance improves smoothly as we increase the model size, datasetset size, and amount of compute² used for training. For optimal performance all three factors must be scaled up in tandem. Empirical performance has a power-law relationship with each individual factor when not bottlenecked by the other two.

Need for Context

Real world data is contextual

@ Fill-Mask	Examples 🗸
Mask token: [MASK]	
I reside in the state of [MASK].	
Compute Computation time on cpu: cached	
washington	0.079
california	0.074
texas	0.069
ohio	0.046
oregon	0.043
Requires location context	

Mask token: [MASK]

President [MASK] is the current president of USA.

Compute

Computation time on cpu: 0.056 s 0.074 obama 0.025 johnson 0.014 kennedy 0.013 pakistan 0.011 he

1

Requires temporal context

Mask token: [MASK]

So happy to	see the [MASK] win their NFL match.	le
Compute		

Computation time on cpu: 0.048 s

074	team		0.061
069	giants	-	0.052
046	cowboys		0.051
	patriots		0.048
043	bears		0.047
	Requires social context		10

Need for context in Translation

When translating a language it is also important to learn which words from one language map to which words in the other language to avoid embarrassing errors like the following:

Contextual Text

Shubhanshu Mishra @TheShubhanshu · Dec 3 ···· Introducing PyTAIL tool and benchmark paper from my PhD thesis done in collaboration with my advisor @janadiesner at InterNLP and HiLL @NeurIPSConf workshops.

PyTAIL aims to merge active learning, online learning, and human in the loop interface.

Topical Signal

github.com/socialmediaie/... 📀

 Shubhanshu Mishra @TheShubhanshu · Dec 3
 ...

 Replying to @TheShubhanshu
 PyTAIL goes beyond the simulation setting of active learning to support efficient human in the loop process of data annotation using data, rule, and lexicon suggestions which can lead to faster annotations.

 Presentation: youtube.com/watch?v=AwDu64...

 #NeurIPS22 #NLP #MachineLearning

Shubhanshu Mishra @TheShubhanshu · Dec 3 This work was done during my PhD at @iSchoolUI at @UofIllinois and @DiesnerLab and is based on chapter 8 of my thesis.

More details on my thesis can be found at: shubhanshu.com/phd_thesis/

Community and Location Signal

Challenges of encoding context via Text based prompts

- 1. You need a good way to represent context via text based prompt which is informative.
 - a. Requires trial and error.
 - b. Difficult for images, audio, video. You can use signal to text and then add it as prompt. [1]
- 2. Inappropriate handling of rare words because of tokenization issues
 - a. URL, user handles, rare brand names will lead to token based splitting and the context is lost.
- 3. Text is often the wrong abstraction for context which is embedded in a graph.
 - a. A user is known more by their engagement signal than by their name, description.
 - b. Naive Incontext Learning based on text will not help here.
- 4. Transformers have O(N^2) training and inference cost so using long text based context is more costly than using a single embedding based context.
- 5. Using Context allows us to infuse domain knowledge.

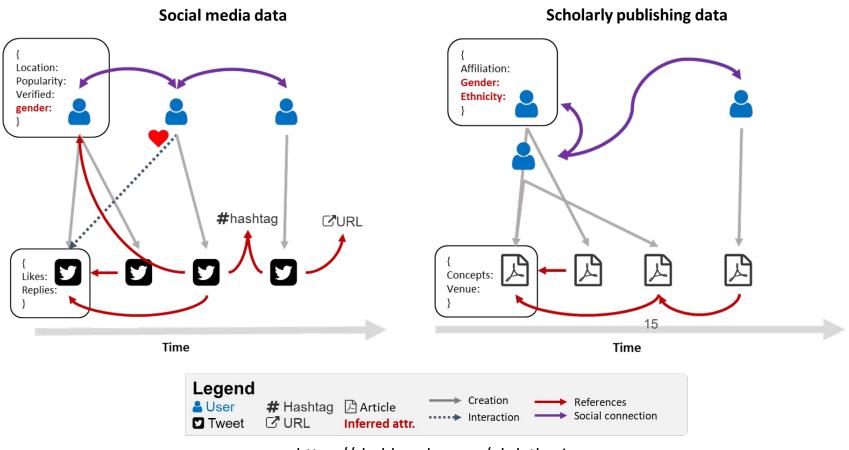
Digital Social Trace Data https://shubhanshu.com/phd_thesis/

A representation for real world contextual text data

Digital Social Trace Data (DSTD) are digital activity traces generated by individuals as part of a social interactions, such as interactions on social media websites like Twitter, Facebook; or in scientific publications.

Can help with building better Content Models for Web Scale Content

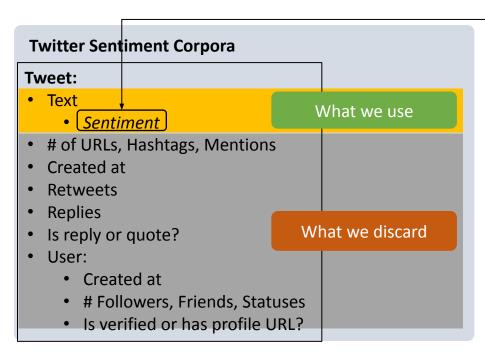
Digital Social Trace Data (DSTD)



https://shubhanshu.com/phd_thesis

Most Language Models are missing this holistic context around the text

Improving sentiment classification using user and tweet metadata



Sentiment is usually identified as **positive**, **negative**, and **neutral**.

- Are our corpora biased to certain meta-data attributes?
- Can those biases propagate into systems trained on these corpora?
- How correlated are these meta-data features with the annotated sentiment?
- Do these correlations hold outside of the annotated data for the same users?
- Can sentiment classifiers exploit this bias to do well on these datasets?

Mishra, S., & Diesner, J. (2018, July 3). Detecting the Correlation between Sentiment and User-level as well as Text-Level Meta-data from Benchmark Corpora. Proceedings of the 29th on Hypertext and Social Media. Https://doi.org/10.1145/3209542.3209562

Types of metadata and what they quantify

User metadata
Statuses
Friends
Followers
days since account creation to posted tweet
Presence of URL on the profile or if the profile is verified
Presence of URL on the profile or if the profile is verified Tweet metadata
Tweet metadata
Tweet metadata # hashtags
Tweet metadata # hashtags # URLs

User metadata v/s Sentiment

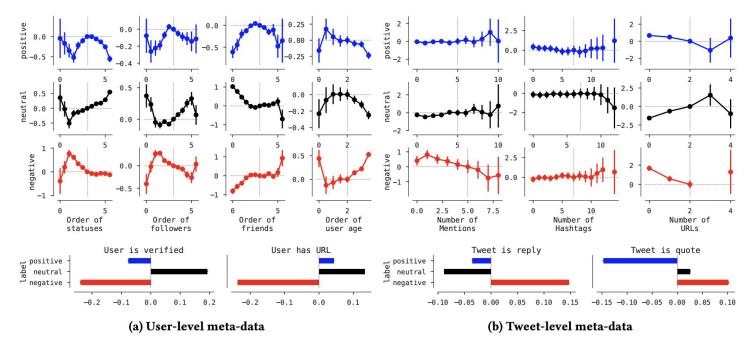


Figure 3: Meta-data features vs. sentiment classes. Y-axis in top plots and X-axis in bottom plots, is log-odds ratio, with respect to point at dashed lines.

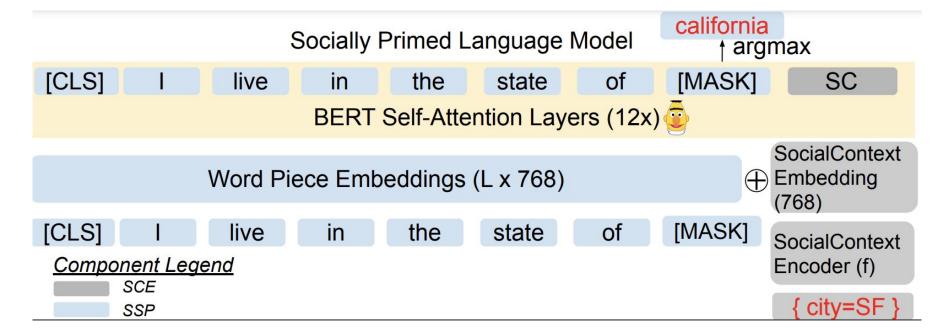
Using metadata features can improve sentiment classification

D-1--1

Madel

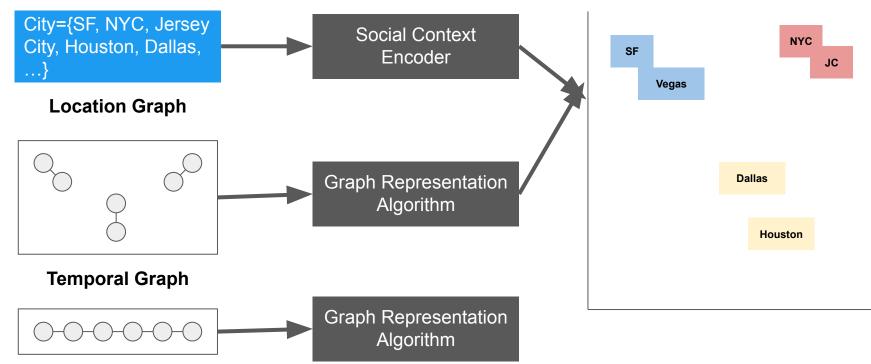
Defeed	Madal						
Dataset	Model	Acc.	Ρ	R	F1	KLD	
Airline	meta text joint	63.9 80.0 80.3	61.1 78.3 76.6	36.8 69.0 72.0	32.8 72.4 74.0	0.663 0.026 0.005	Boost in F1 is
Clarin	meta text joint	45.7 64.1 64.1	42.1 64.5 64.0	40.9 62.2 63.0	37.8 62.9 63.4	0.003 0.238 0.012 0.000	mostly due to better recall. Precision is lower.
GOP	meta text	59.9 66.4	54.3 63.7	37.5 51.4	33.6 53.6	0.776 0.111	MESC might be
Healthcare	joint meta text	65.6 56.7 64.2	59.9 36.8 71.3	56.5 39.4 49.5	57.8 35.1 51.0	0.006 0.717 0.233	helping with tweets with high OOV rates, where
Obama	joint meta text joint	65.6 39.3 61.5 62.3	61.6 37.0 64.8 63.2	58.3 35.1 59.7 61.6	59.5 32.0 60.9 62.2	0.007 0.282 0.030 0.002	text classifiers don't do well.
SemEval	meta text joint	47.0 65.5 65.6	31.0 64.1 62.7	36.2 58.0 60.5	33.0 59.5 61.4	0.845 0.032 0.001	

LMSOC: An Approach for Socially Sensitive Pretraining

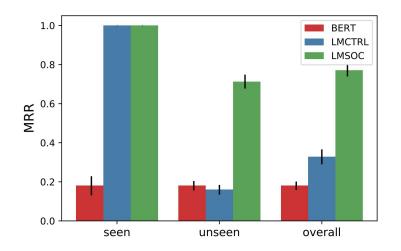


Vivek Kulkarni, Shubhanshu Mishra, and Aria Haghighi. 2021. LMSOC: An Approach for Socially Sensitive Pretraining. In Findings of the Association for Computational Linguistics: EMNLP 2021, pages 2967–2975, Punta Cana, Dominican Republic. Association for Computational Linguistics

Social Context Encoder



Evaluating LMSOC



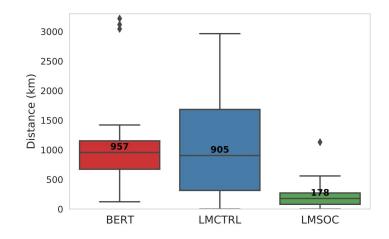


Figure 2: Performance of models on the synthetic data set as measured in terms of mean reciprocal rank (MRR, higher is better). See Section 3.1 for details.

Figure 3: Descriptive statistics of the distances of the top cities from the input city predicted by various models on the **CLOSECITY** task (lower is better). See Section 3.2.2 for details.

Vivek Kulkarni, Shubhanshu Mishra, and Aria Haghighi. 2021. <u>LMSOC: An Approach for Socially Sensitive Pretraining</u>. In Findings of the Association for Computational Linguistics: EMNLP 2021, pages 2967–2975, Punta Cana, Dominican Republic. Association for Computational Linguistics

Evaluating LMSOC

Mod	el	Task						
		S	TATES	NFL				
		MRR ↑ (95% CI)	Mean Rank \downarrow (95% CI)	MRR ↑ (95 % CI)	Mean Rank \downarrow (95% CI)			
BERT	Г	$0.28\ (0.20, 0.36)$	5.6(4.17, 7.02)	$0.03\ (0.02, 0.04)$	59.8(47.1, 72.6)			
LMC	TRL	$0.41\ (0.30, 0.51)$	9.8(4.34, 15.29)	$0.03\ (0.02, 0.04)$	86.8(61.38, 112.2)			
LMS	OC	old 0.78~(0.68, 0.89)	$2.3\ (0.72, 3.89)$	$0.15\;(0.12,0.19)$	${f 10.64} \ ({f 6.66}, {f 14.62})$			

Input Sentence	Social Context	Top 10 predicted tokens
I reside in the state of [MASK]	San Diego	<i>california, ca, texas, mexico</i>
I reside in the state of [MASK]	Dallas	<u>texas, houston, mexico, california, tx</u>
I reside in the state of [MASK]	Tampa	<u>florida, georgia, fl, texas, jacksonville</u>
The most popular nfl team in our state is [MASK]	San Diego	<u>. the 49ers seattle patriots</u>

Vivek Kulkarni, Shubhanshu Mishra, and Aria Haghighi. 2021. LMSOC: An Approach for Socially Sensitive Pretraining. In Findings of the Association for Computational Linguistics: EMNLP 2021, pages 2967–2975, Punta Cana, Dominican Republic. Association for Computational Linguistics

Bringing it all together

NTULM: Enriching Social Media Text Representations with Non-Textual Units

Motivation: Non-Textual Units

27

Non-Textual Units (NTUs) are the social contexts which appear alongside a social media post, e.g. *Hashtag*, *URL*, *author*, *user mentions* and *media*

Challenge: Existing models and NTUs

NTUs embedded in the text are broken up by tokenizers diminishing their signal.

Non embedded NTUs are not included.

28

NTUs have a global context outside of the text.

```
[happy, [UNK], #, world, ##tur, ##tled, ##ay, [UNK],
from, #, deep, ##lo, ##ok, !, let, , s, #, shell,
##ab, ##rate, !, watch, these, crazy, cute, baby,
turtles, take, their, lake, back, in, this, video,
from, our, archives, featuring, conservation, efforts,
by, @, oak, ##zoo, @, sf, ##zoo, and, @, pre, ##si,
##dio, ##sf, ., http, :, /, /, bit, ., 1, ##y, /, y,
##tt, ##urt, ##les]
(Result from tokenizer of bert-base-uncased)
```


Intuition: Our approach for Non-Textual Units

Inject average NTU embeddings into the Transformer alongside token embeddings.

Pre-compute NTU embeddings using heterogeneous networks, e.g. social engagements for users and Hashtags

[happy, [UNK], #, world, ##tur, ##tled, ##ay, [UNK], from, #, deep, ##lo, ##ok, !, let, , s, #, shell, ##ab, ##rate, !, watch, these, crazy, cute, baby, turtles, take, their, lake, back, in, this, video, from, our, archives, featuring, conservation, efforts, by, @, oak, ##zoo, @, sf, ##zoo, and, @, pre, ##si, ##dio, ##sf, ., http, :, /, /, bit, ., 1, ##y, /, y, ##tt, ##urt, ##les] + [@KQEDscience, #WorldTurtleDay, #DeepLook, #shellabrate, @oakzoo, @sfzoo, @presidiosf, bit.ly/YTTurtles, Media 1]

NTULM Framework

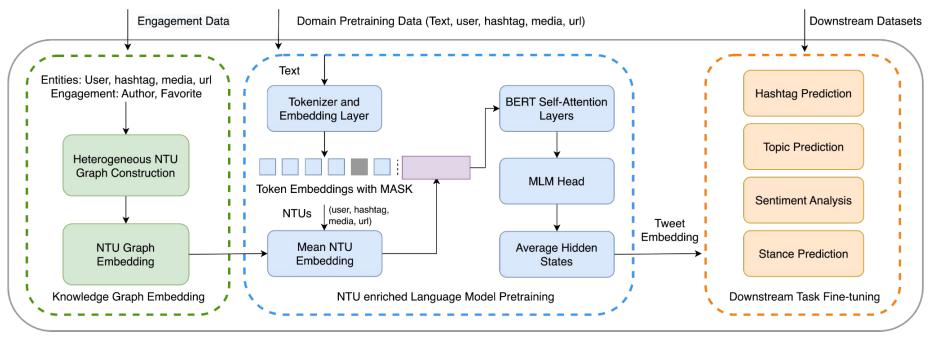


Fig 1: Framework of NTULM

Knowledge Graph Embedding

- Graph nodes: author, Hashtag
- **Graph edges**: connect user-Hashtag if user authors, favorites, or is co-mentioned with a Hashtag
- Training: TwHIN framework (EI-Kishky et al)

Author: user1 Tweet: Our paper was accepted at @WNUT with @user2 @user3 #nlproc #socialmedia Favorited by: user4, user5

Table 1: Example tweet with engagement data of author,mentions, Hashtags, and favorites

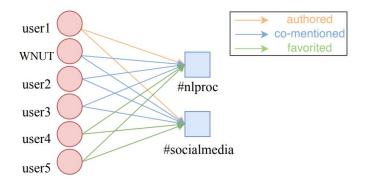
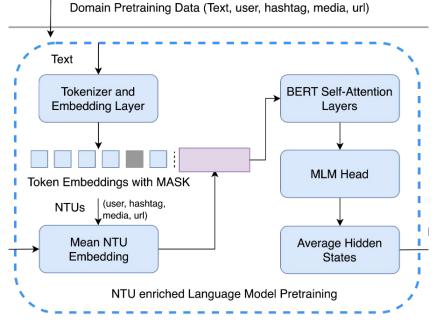


Figure 2: Graph construction with the example data in Table 1 for training NTULM user-Hashtag embeddings.

NTULM: Masked Language Modeling

- Tweet with NTUs, use average NTU embeddings
- Linear projection to map the average NTU embedding from graph space to LM space
- Concatenate NTU embedding to token embeddings
- Average embedding of NTU type for OOV NTUs
- Fine-tune NTULM via MLM



Experiments - Dataset

NTU heterogeneous network: Tweets (2018-01-01~2022-07-01) with Hashtags and their engagements with users, consisting of 60M Hashtags, 255M users, 5B authorship edges, 3B favorite edges, and 0.9B co-mention edges. We only considered users with 10 - 100 unique Hashtags interactions

MLM fine tuning: 1M Tweets sampled from (2022-06-01~2022-06-15). We also fine-tune BERT without NTUs on these Tweets.

Downstream Tasks: TweetEval, SemEval, SocialMedialE, Hashtag Pred, Topic

Results: Masked Language Modeling

Model	NTUs	Perplexity bits
BERT	-	4.425
NTULM	author	4.412
NTULM	Hashtag	4.391
NTULM at	4.344	

Incorporating NTU embedding improves perplexity

Hashtag embedding is more effective than user embedding, combination is best

Evaluation on Downstream Tasks

Tweet embedding = average final layer hidden states of valid tokens (and NTUs)

Compute all the Tweet embeddings in Downstream Train and Test sets

Train a 2-Layer MLP classifier for downstream tasks using Tweet embeddings

Evaluate using task specific metrics (F1 score, precision, AUC)

Results: All tasks

Model	NTUs	Perplexity	Topic	TweetEval	SemEval 1	SemEval 2	Hashtag	SMIE
		bits	MAP	mean F1	mean F1	mean F1	Recall@10	mean F1
BERT	-	4.425	0.327	0.577	0.527	0.515	0.689	0.548
NTULM	author	4.412	0.325	0.579	0.527	0.548	0.693	0.548
NTULM	Hashtag	4.391	0.339	0.586	0.534	0.545	0.711	0.539
NTULM a	uthor+Hashtag	4.344	0.343	0.590	0.534	0.545	0.720	0.549

Incorporating NTU embedding improves downstream task performance

Hashtag embedding is more effective than user embedding, combination is best

NTU Overlap in downstream datasets

Dataset	Hashtag overlap	User overlap
Hashtag	99%	10%
SemEval	92%	21%
Social Media IE	95%	22%
Торіс	99%	14%
TweetEval	98%	0%
Grand Total	95%	14%

Downstream Hashtags more likely to overlap with NTU embeddings than users.

Why is NTULM effective?

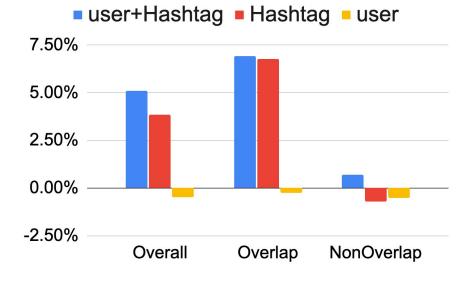
Hypothesis:

- If NTU is available, NTULM should help.
- If NTU is absent, NTULM should be similar to BERT.

Observation:

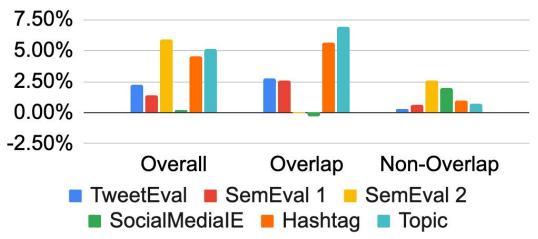
- Hypothesis holds
- Gains with Hashtag NTU are much better than user.

Topic Task % improvement over baseline BERT model



Results: Overlap performance

NTULM (user+Hashtag) % improvement over BERT across NTU overlap with Embeddings

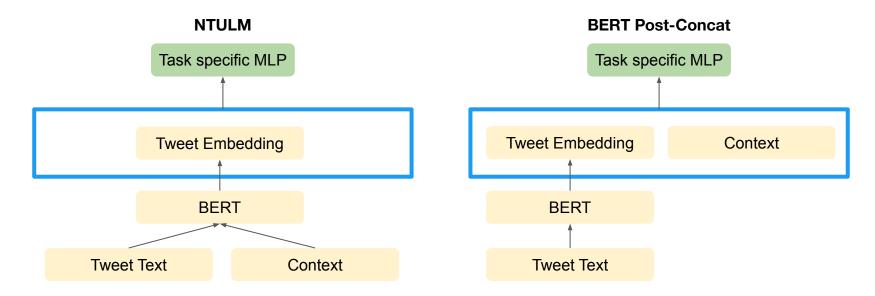


NTULM improved over BERT more when we have no OOV NTUs

Even for no NTUs, NTULM learns good text based embeddings which show small improvements.

NTULM v/s BERT and Context separate

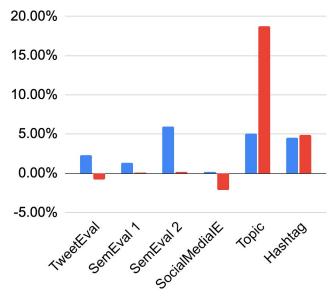
Alternative way to add context embedding: concatenate the context embedding after the BERT encoder? (named BERT Post-Concat or BERTC)



NTULM v/s BERT and Context separate

Dataset	Ove	erall	Ove	erlap	Non-Overlap		
	NTULM	BERTC	NTULM	BERTC	NTULM	BERTC	
TweetEval	2.27%	-0.80%	2.73%	-3.33%	0.31%	0.65%	
SemEval 1	1.36%	0.08%	2.59%	0.21%	0.65%	0.02%	
SemEval 2	5.93%	0.22%	-0.07%	0.58%	2.62%	0.07%	
SocialMediaIE	0.20%	-2.12%	-0.27%	-4.12%	1.98%	-22.22%	
Hashtag	4.51%	4.87%	5.61%	7.46%	1.01%	-3.37%	
Торіс	5.10%	18.72%	6.92%	34.72%	0.71%	-4.17%	

- **NTULM** integrates contexts embedding before attention layer, enabling the BERT encoder to automatically learn the attention of context embeddings.
- **BERTC** directly attach the context embedding after encoder, making it over-dependent on context embedding (affects the language model itself)



Vision for high business impact

- Many text based user inputs are contextual.
- Using these inputs with their context can lead to better representation.
- This can help address:
 - The cold-start problem (as embeddings based on text), and
 - The popularity bias (as text embeddings are contextual)
- Social Graph can be integrated directly as part of language models to have better item and session representations which can power search and recommendation systems.

- Context is important when modeling language
- Spatio temporal and social context when utilized can lead to improved performance of language models on downstream tasks
- NTULM shows how to integrate social context of Non Textual Units into language models
- NTULM led to significant improvements on a variety of tasks over other baselines
- Improving coverage of NTUs may further improve NTULM.

Some newer works

TwHIN BERT: Tweets which are co-engaged are similar

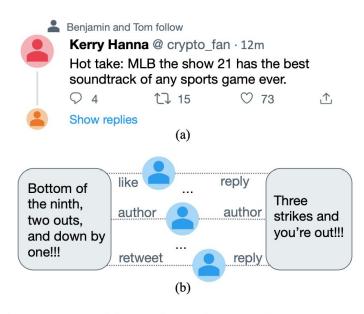


Figure 1: (a) This mock-up shows a short-text Tweet and social engagements such as Faves, Retweets, Replies, Follows that create a social context to Tweets and signify Tweet appeal to engaging users. (b) Coengagement is a strong indicator of Tweet similarity.

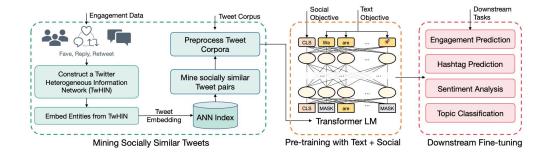


Figure 2: We outline the end-to-end TwHIN-BERT process. This three-step process involves (1) mining socially similar Tweet pairs by embedding a Twitter Heterogeneous Information Network (2) training TwHIN-BERT using a joint social and MLM objective and finally (3) fine-tuning TwHIN-BERT on downstream tasks.

Table 1: Engagement prediction HITS@10 on high, mid, low-resource, and average of all languages.

	Hig	High-Resource			Mid-Resource			Low-Resource			
Method	en	ja	ar	el	ur	nl	no	da	ps	Avg.	
mBERT	.0633	.0227	.0532	.0496	.0437	.0616	.0731	.1060	.0522	.0732	
XLM-R	.0850	.0947	.0546	.0628	.0315	.0650	.1661	.1150	.0727	.0849	
XLM-T	.1181	.1079	.1403	.0562	.0352	.0762	.1156	.1167	.0662	.1043	
TwHIN-BERT											
- Base-MLM	.1400	.1413	.1640	.0801	.0547	.0965	.1502	.1334	.0600	.1161	
- Base	.1552	.2065	.2206	.0944	.0627	.1346	.1920	.1470	.0799	.1436	
- Large	.1585	.2325	.1989	.1065	.0667	.1248	.2118	.1475	.0817	.1497	

KELM: Integrating Knowledge Graphs with Language Model Pre-training Corpora



REALM Retrieval Corpus	NQ	WQ
ORIGINAL		
Wikipedia (reported)	40.40	40.70
Wikipedia (rerun)	38.84	40.80
Replaced		
Triple Documents	21.14	42.54
KELM Documents	22.58	41.19
AUGMENTED		
Wikipedia + Triple Documents	40.28	42.91
Wikipedia + KELM Documents	41.47	43.90

Table 7: Exact Match (EM) accuracy of REALM on NQ and WQ. Pretraining corpus used is CC-News.

Performance on Natural Questions and Web Questions benchmark

[2010.12688] Knowledge Graph Based Synthetic Corpus Generation for Knowledge-Enhanced Language Model Pre-training

Figure 1: An example of generating text from KG. First, the entity subgraphs on the left are created and then converted to the sentence on the right.

SKILL: Structured Knowledge Infusion for Large Language Models

Wikidata triple	KELM sentence	Wikidata input	KELM input	Target
("Pulp Fiction",	Quentin Tarantino	Pulp Fiction,	Quentin Tarantino	
"award received",	won the Palme d'Or in 1994	award received,	won the [MASK] in 1994	Palme d'Or
"Palme d'Or")	for Pulp Fiction.	[MASK]	for Pulp Fiction.	

Table 1: Example inputs for SKILL pre-training with Wikidata and KELM corpora.

Model	Freeb	aseQA	Wiki	іНор	TQA-n	natched	T	QA	NQ-m	atched	Ν	Q
	dev	test	dev	test	dev	test	dev	test	dev	test	dev	test
base	25.24	27.55	19.09	18.38	31.24	33.55	22.64	22.93	36.64	32.68	25.04	25.48
base $+ C4$	26.19	28.33	19.57	19.36	32.9	34.4	24.54	25.39	36.98	32.03	25.88	25.84
base + WikiKG	26.92	28.38	20.28	20.22	34.21	35.08	24.73	25.77	37.41	33.33	25.51	25.76
base + KELM	26.64	28.15	20.62	19.81	33.64	35.54	25.22	25.75	36.98	32.9	25.31	26.2
large	30.22	32.88	20.92	21.12	36.7	38.09	29.24	30.03	39.22	35.06	27.12	27.15
large + C4	32.55	34.01	22.5	21.51	38.78	40.6	30.32	30.83	39.74	35.5	27.46	28.17
large + WikiKG	33.22	35.29	23.5	23.4	39.19	41.02	29.74	30.47	41.12	35.93	27.38	27.89
large + KELM	32.65	34.16	23.34	22.91	39.45	40.76	30.51	30.65	40.95	35.5	27.67	28.56
XXL	43.67	45.02	24.76	24.8	51.73	53.1	42.44	42.21	46.47	43.72	31	32.27
XXL + C4	42.01	44.14	23.34	22.23	50.59	52.19	40.66	40.99	45.43	40.26	30.35	31.08
XXL + WikiKG	45.22	47.25	27.57	27.65	54.17	54.18	42.55	43.54	49.14	44.37	31.11	32.74
XXL + KELM	45.42	45.9	26.11	26.26	53.65	54.21	42.68	42.95	48.53	44.16	31.79	32.6

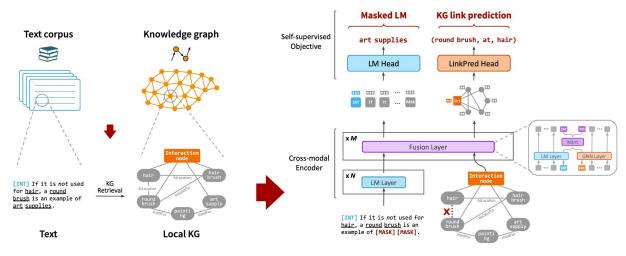
Dataset	Split	Baseline	+ C4	+ KG
1-hop	dev	24.3	23.12	71.52
1-nop	test	24.5	23.53	71.47
2-hop	dev	32.05	32.23	33.49
2-nop	test	32.65	32.78	33.57
3-hop	dev	42.08	39.22	43.79
5-nop	test	42.31	39.66	43.41

Table 3: Exact match scores achieved by fine-tuning different T5.1.1-large checkpoints on MetaQA task.

Good performance on WikiMovies KG (MetaQA) using multi-hop reasoning.

1-hop: "What films does Paresh Rawal appear in?" 2-hop: "Who are the directors of the films written by Laura Kerr?" 3-hop: "Who directed the movies written by the writer of Millennium Actress?"

DRAGON Street Deep Bidirectional Language-Knowledge Graph Pretraining



- LLM + GNN
- Joint optimization
- Very good on Entity based question answering

Raw data

Pretrain DRAGON

	Negation	Conjunction	Hedge	# Prepositional Phrases			# Entities	
				0	1	2	3	>10
RoBERTa	61.7	70.9	68.6	67.6	71.0	71.1	73.1	74.5
QAGNN	65.1	74.5	74.2	72.1	71.6	75.6	71.3	78.6
GreaseLM	65.1	74.9	76.6	75.6	73.8	74.7	73.6	79.4
DRAGON (Ours)	75.2	79.6	77.5	79.1	78.2	77.8	80.9	83.5

REALM: Retrieval-Augmented Language Model Pre-Training

- Unlabeled text, from pre-training corpus (\mathcal{X}) -The [MASK] at the top of the pyramid (x)Textual retrieve \sim Neural Knowledge Retriever $\sim p_{\theta}(z|x)$ knowledge corpus (\mathcal{Z}) Retrieved document The pyramidion on top allows for less material higher up the pyramid. (z)Query and document [CLS] The [MASK] at the top of the pyramid [SEP] The pyramidion on top allows for less material higher up the pyramid. (x, z)Knowledge-Augmented Encoder $\sim p_{\phi}(y|x,z)$ Answer [MASK] = pyramidion (y)

Name	Architectures	Pre-training	NQ (79k/4k)	WQ (3k/2k)	CT (1k /1k)	# params
BERT-Baseline (Lee et al., 2019)	Sparse Retr.+Transformer	BERT	26.5	17.7	21.3	110m
T5 (base) (Roberts et al., 2020) T5 (large) (Roberts et al., 2020) T5 (11b) (Roberts et al., 2020)	Transformer Seq2Seq Transformer Seq2Seq Transformer Seq2Seq	T5 (Multitask) T5 (Multitask) T5 (Multitask)	27.0 29.8 34.5	29.1 32.2 37.4	-	223m 738m 11318m
DrQA (Chen et al., 2017) HardEM (Min et al., 2019a) GraphRetriever (Min et al., 2019b) PathRetriever (Asai et al., 2019) ORQA (Lee et al., 2019)	Sparse Retr.+DocReader Sparse Retr.+Transformer GraphRetriever+Transformer PathRetriever+Transformer Dense Retr.+Transformer	N/A BERT BERT MLM ICT+BERT	28.1 31.8 32.6 33.3	20.7 31.6 36.4	25.7 - - 30.1	34m 110m 110m 110m 330m
Ours (\mathcal{X} = Wikipedia, \mathcal{Z} = Wikipedia) Ours (\mathcal{X} = CC-News, \mathcal{Z} = Wikipedia)	Dense Retr.+Transformer Dense Retr.+Transformer	REALM REALM	39.2 40.4	40.2 40.7	46.8 42.9	330m 330m

Augmented Language Models: a Survey

Contents

- 1 Introduction: motivation for the survey and definitions
 - 1.1 Motivation
 - 1.2 Our classification

2 Reasoning

- 2.1 Eliciting reasoning with prompting
- 2.2 Recursive prompting
- 2.3 Explicitly teaching language models to reason
- 2.4 Comparison and limitations of abstract reasoning

3 Using Tools and Act

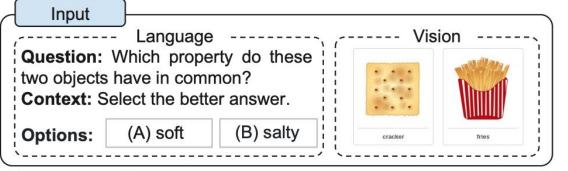
3.1 Calling another model

3.2 Information retrieval

- 3.2.1 Retrieval-augmented language models
- 3.2.2 Querying search engines
- 3.2.3 Searching and navigating the web
- $\underline{3.3}$ Computing via Symbolic Modules and Code Interpreters
- $\underline{3.4}$ Acting on the virtual and physical world
- 4 Learning to reason, use tools, and act
 - 4.1 Supervision
 - 4.2 Reinforcement learning
 - 4.3 Limitations and future directions
- 5 Discussion

Really great survey on different ways of augmenting LLMs to support reasoning, usage of external tools, and retrieval models using external KG.

Multimodal Chain-of-Thought Reasoning in Language Models



[2302.00923] Multimodal Chain-of-Thought Reasoning in Language Models

1B parameter model

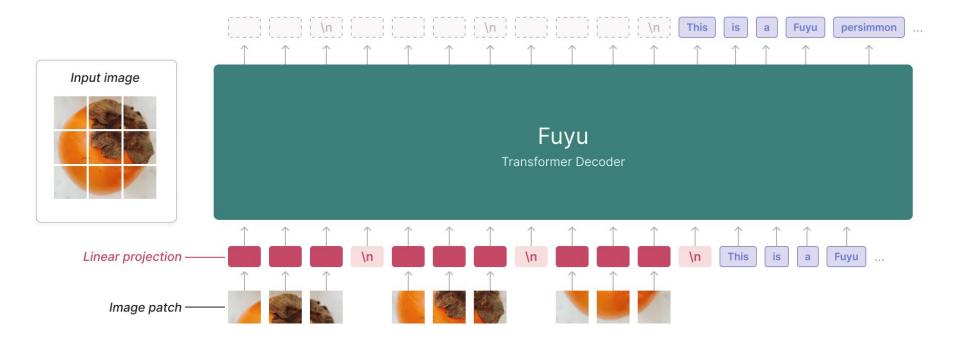
Output

Rationale: Look at each object. For each object, decide if it has that property. Potato chips have a salty taste. Both objects are salty. A soft object changes shape when you squeeze it. The fries are soft, but the cracker is not. The property that both objects have in common is salty.

Answer: The answer is (B).

Figure 1. Example of the multimodal CoT task.

Fuyu MLLM



Fuyu-8B: A Multimodal Architecture for AI Agents

KOSMOS-1

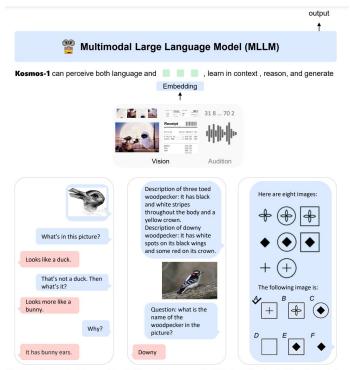


Figure 1: KOSMOS-1 is a multimodal large language model (MLLM) that is capable of perceiving multimodal input, following instructions, and performing in-context learning for not only language tasks but also multimodal tasks. In this work, we align vision with large language models (LLMs), advancing the trend of going from LLMs to MLLMs.

<s> paragraph <image> Image Embedding </image> paragraph </s>

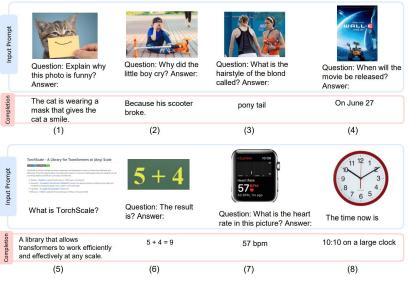
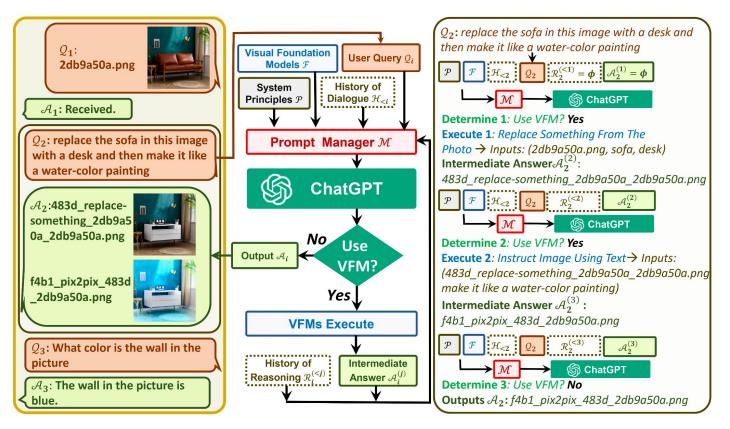


Figure 2: Selected examples generated from KOSMOS-1. Blue boxes are input prompt and pink boxes are KOSMOS-1 output. The examples include (1)-(2) visual explanation, (3)-(4) visual question answering, (5) web page question answering, (6) simple math equation, and (7)-(8) number recognition.

Visual ChatGPT



[2303.04671] Visual ChatGPT: Talking. Drawing and Editing with Visual Foundation Models GitHub - microsoft/visual-chatgpt: VisualChatGPT

PaLM-E: An Embodied Multimodal Language Model

A dog jumping over a

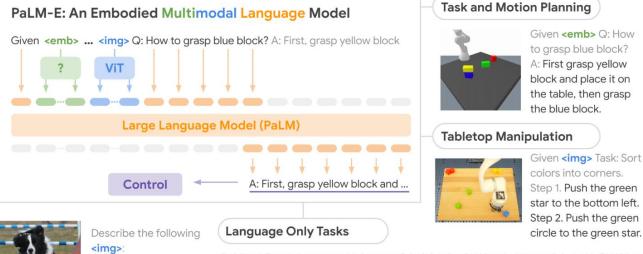
hurdle at a dog show.

Mobile Manipulation

Human: Bring me the rice chips from the drawer. Robot: 1. Go to the drawers, 2. Open top drawer. I see . 3. Pick the green rice chip bag from the drawer and place it on the counter.

Visual Q&A, Captioning ...

Given ****. Q: What's in the image? Answer in emojis. A: 🍏 🍌 🌮 🏷 🍑 🏠 🕹



Q: Miami Beach borders which ocean? A: Atlantic. Q: What is 372 x 18? A: 6696.Q: Write a Haiku about embodied LLMs. A: Embodied language. Models learn to understand. The world around them.

56

Reach out for questions:

- Twitter: <u>@TheShubhanshu</u>
- LinkedIn: https://www.linkedin.com/in/shubhanshumishra
- Webpage: <u>https://shubhanshu.com/</u>

Links

- [2208.10174] KEEP: An Industrial Pre-Training Framework for Online Recommendation via Knowledge Extraction and Plugging
- [PDF] Training Large-Scale News Recommenders with Pretrained Language Models in the Loop | Semantic Scholar
- [2101.12294] Combining pre-trained language models and structured knowledge
- <u>Prismer: A Vision-Language Model with Multi-Modal Experts</u> <u>https://twitter.com/DrJimFan/status/1633868130932891648</u>
- <u>MultiDiffusion</u>
- [2101.12294] Combining pre-trained language models and structured knowledge
- <u>KELM: Integrating Knowledge Graphs with Language Model Pre-training Corpora</u> [2010.12688] <u>Knowledge Graph Based</u>
- [2210.03629] ReAct: Synergizing Reasoning and Acting in Language Models
 - <u>https://github.com/hwchase17/langchain/blob/master/langchain/agents/conversational/prompt.py</u>
- [2302.00923] Multimodal Chain-of-Thought Reasoning in Language Models
- Pre-train, Prompt and Recommendation: A Comprehensive Survey of Language Modelling Paradigm Adaptations in Recommender Systems