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ABSTRACT 
Social networks can be constructed from explicit information 
about who is talking to whom, and/ or inferred from the content of 
communication. How do the resulting network structures 
compare? We provided an answer to this question by constructing 
explicit social networks from chat logs and comparing them to 
implicit social networks built from text data generated by these 
agents. We apply different conceptualizations of similarity to the 
text data. This work helps to understand if explicit social networks 
(what people typically work with) can serve as a proxy for the true 
structure of communication networks. 

Our findings suggest that the more simplistic approach on the 
lexical level outperforms the more complex, topic based approach. 
This means that reconstructing social networks based on lexical 
features is the best option tested, while detecting alternative and 
additional latent structures of people sharing the same topical 
knowledge requires looking for thematic clusters of word use.  
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1. INTRODUCTION  
Communication networks are meant to represent network 
participants and the information flow between them. Typically, 
communication networks are constructed by observing or 

inquiring information about who is talking to whom. In a more 
general sense, these networks represent social networks where 
people interact with each other through a specific type of behavior, 
i.e. natural language. Building such networks by denoting social 
agents as nodes and the information flow between them as edges is 
straightforward, acknowledges the exchange of information, and 
can be highly efficient, e.g. when network data are automatically 
extracted from chat logs, email conversations or social media data. 
However, this approach also reduces the content of 
communication to the fact, frequency or likelihood of the flow of 
information between nodes. This can be problematic since prior 
research has shown that without considering the substance of 
communication data, our ability to model and understand the 
effects of language use in networks becomes limited. This 
includes the transformative role that language use can play in 
networks as well as the interplay and co-evolution of 
communication and networks [1-5].  

To address this limitation, a variety of methods for building social 
network data from information explicitly or implicitly contained in 
unstructured, natural language text data has been developed [for 
an overview see 6]. These methods are explained in more details 
in the background section. We herein refer to network data 
collected by observing or asking network participants about their 
ties as explicit social networks, and networks inferred from the 
content of text data as implicit social networks. The body of prior 
work on these networks leaves three critical questions 
unanswered:  

1. How do communication networks extracted from 
information contained in text data (implicit social 
networks) compare to networks constructed by 
collecting data from the networks participants directly, 
e.g. by questionnaires or observations (explicit social 
networks)? 

2. Given a variety of available methods for extracting 
implicit social networks from text data, which method(s) 
best resemble(s) explicit social networks?  

3. Are there any best practices for combining text-based 
methods (with or without explicit network data 
construction methods) for gaining a more 
comprehensive view of a network? 
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In this paper, we address questions one and two. The outcome of 
this work patches some holes at the intersection of network 
analysis and text mining, and lays the foundations for answering 
questions three. Why does this work matter? First, without 
knowing how closely implicit social networks resemble explicit 
social networks, we cannot assume that explicit social networks 
are a good proxy for the true structure of communication 
networks. Second, if explicit and implicit social network data 
align, then one type can serve as a substitute for the other type, 
e.g. in cases where data collection for a certain type is hard to 
infeasible. In order to address the given research questions, we 
have implemented and modified a variety of techniques for 
extracting social networks from text data (methods section), 
applied them to a corpus of empirical chat log data from which we 
also construct explicit social network structure (data section), and 
compared the results against each other (results section).   

2. BACKGROUND 
One general approach for constructing implicit social network data 
from text data is to conduct entity detection paired with relation 
extraction [7]. This means to identify all instances of references to 
social agents in the text data, and linking them based on criteria 
such as distance (the most common approach) [2], shallow and 
deep syntax [1], and statistical features [7-9]. This approach is 
reasonable when social agents as well as indicators for the 
relations between them are referred to in the text data. Overall, the 
underlying goal here is to correctly extract social structure from 
text data [10]. This is particularly useful when no other sources for 
network data might be available, e.g. in the cases of historic and 
covert networks.  

Alternatively, authors of pieces of text data can be considered as 
agent nodes. This could be the authors of documents, posts, 
tweets, etc.. Information on social agents can also be entailed in 
log files that record discussions between people [11]. In either 
case, these nodes then get linked based on a certain amount of 
similarity between the agent’s language use, sentiment etc. In the 
simplest case, this is realized by extracting salient terms or (one 
step up) themes that emerge from the text data, representing these 
(sequences of) tokens as vectors, and computing the congruence 
between these vectors by choosing from a variety of similarity 
metrics [12, 13]. Overall, this approach is useful when network 
participants have provided some content, which can then serve to 
construct social network data or supplement explicit social 
network data.  

In this paper, we focus on the second approach. Why? First, 
because it represents the more general case, and relation extraction 
might still be conducted in addition to the similarity-based node 
linkage. Second, this approach eliminates uncertainties or error 
rates for the entity detection part such that we can focus on the 
core of our research questions without diluting the results with 
additional intervening variables. Accuracy of entity detection 
currently ranges, depending on the type of entity, between the 
upper 80ies to 90% percent; with this intervening factor being 
removed from our experimental design for this study.  

3. DATA 
The data for this project were captured from a computer-based 
simulation game designed specifically to identify the defining 
aspects of multiple teams working interdependently toward 
hierarchically arranged goals. The goal of this multi-team system 
simulation is to guide a convoy of humanitarian aid through 
enemy territory. To accomplish this goal, individuals must collect 

intelligence, neutralize threats, and move the convoy to reach as 
many destinations in their region as possible. There are four 
component teams – Atlantica, Baltica, Caspia, and Pacifica – in 
each simulation session. Each component team consisted of five 
individuals: a leader, a reconnaissance officer and a field specialist 
who work on counter-insurgency, and a reconnaissance officer and 
a field specialist who work on ordinance disposal. Roles were 
appointed randomly. The leaders were charged with moving the 
convoy. The leaders had to agree on where and when to advance 
the convoy. The four non-leader team members were responsible 
for identifying and neutralizing threats. Each team had a counter-
insurgency and an ordinance disposal unit; each comprised of a 
reconnaissance officer and a field specialist. The reconnaissance 
officer is responsible for identifying potential threats and must 
communicate this information to the field specialist, who will then 
act on engaging and eliminating the threat. 

All individuals were given their own laptop and headset. 
Communication was carried out primarily via Skype, both through 
chat and voice. For each simulation session, a full transcript of 
time-stamped messages was logged. For this paper, we are 
considering the chat logs of each simulation session. In addition to 
virtual communication channels, the players were grouped into six 
physical workstations, each of which had two to four individuals. 
Three workstations allowed face to face communication; in the 
other three, the players were forced to use only their headsets. 
Additionally, the rooms were shuffled so that players were not 
necessarily collocated with their own team. The room assignments 
and communication rules were constant across all sessions. 

In total, thirty-three experimental sessions were carried out. 
Overall, there were 660 unique individuals in the experiment. 
However, the twenty game-specific roles were held constant 
across each run; in other words, “leader.caspia” was played by 
thirty-three people, but sat in the same seat in the same room on 
the same laptop, and was responsible for the same quadrant of the 
game map. 

4. METHOD 
From the abovementioned chat log data, we have constructed one 
explicit social network for each of the 33 simulation games. In 
order to compare these networks to implicit social networks that 
are built based on shared knowledge entailed in the content of chat 
logs, we apply different techniques as outlined below. We have 
implemented these techniques as described in this section and 
made them available as routines in ConText 
(http://context.lis.illinois.edu/), a publicly available toolkit.  

Usually, communication logs consist of a messages set. Elements 
of each message can have attributes such as sender, message body, 
timestamp, priority, etc. We formalize the set of possible types of 
communication representable by chatlogs as person-to-person 
networks and broadcasting networks. In person-to-person 
networks, each message has sender and receiver attributes. In 
broadcasting networks, each message only has a sender; all nodes 
in the network are receivers in this case. The assumed data 
structure for communication data or chat logs that we are 
processing are csv files that contain at a minimum: 

• A column that specifies senders 

• A column that specifies receivers  

• Communication content 

We generate social networks from the textual evidence of 
communication activity as well as from text content by detecting 



concepts and themes that are shared between people. For the first 
approach, we basically parse the senders (and receivers) from the 
log file. For the second approach, we use token based and topic 
based text mining methods, which we describe next.  

4.1 Token Similarity Based Networks 
A communication network consists of agent sets 

. For simplicity, we consider each message as a 
pair  where  is message body and  is message sender. The 
messages set is  where 

 and are arbitrary strings. We define the similarity of two 
agents using their messages similarity in , 

    

Where  is the number of message in  that  sent.  

For messages similarity, we use different conceptualizations of the 
string similarity of any pair of messages. In general, there are two 
groups of string similarity methods: edit-distance like functions 
and token-based distance functions [12]. In edit-distance like 
functions, the distance  is calculated as the costs of the 

operations needed to convert  to . Typical edit operations 
include character insertion, deletion and substitution. Each 
operation has predefined costs. Levenstein, Jaro and Jaro-Winkler 
are three most common edit-distance like methods.  

In token-based distance functions, and  are considered as 
multisets of tokens (we define words as space separated tokens). 
Jaccard similarity, cosine similarity and Jensen-Shannon are the 
most common token-based functions.  

We herein use the following similarity methods: (1) Jaccard 
similarity, and (2) SoftTFIDF Jaro-Winkler. The Jaro–Winkler 
distance metric is designed and best suited for short strings such as 
the names of people, organizations and locations. The score is 
normalized such that 0 equates to no similarity and 1 indicates an 
exact match. We provide the “soft” version of TFIDF in Jaro-
Winkler, in which similar tokens are considered as well as exact 
match tokens in Jaro-Winkler. It has been empirically shown that 
the best-performing method for string distance metrics in terms of 
accuracy and speed is SoftTFIDF Jaro-Winkler [12].  

4.2 Topic Based Networks 
In order to identify agents who are connected based on similar 
topics we conduct topic modelling [14]. Topic modeling is an 
unsupervised summarization technique that represents the main 
themes occurring in a body of text data in terms of topics, where 
topics are unlabeled ordered sets of text-based tokens that most 
strongly represent that topic. We have adapted LDA based topic 
modelling as provided in Mallet [15], which we have integrated 
into ConText. The input data for our version of topic modeling are 
the messages sent by each user. Given n users in a chat log file, we 
construct n documents, one per user. Each document contains all 
the messages from that one user.  

In order to also capture users connected through topics that might 
be less prevalent overall but highly descriptive for individual 
users, we recommend generating a large number of topics, e.g. 50. 
This strategy was also used for this project. From the outcome of 
topic modeling we collect the probability scores that indicate the 

fitness of each topic per document; i.e. user. From here on, we 
provide four ways of generating social networks from this data, 
namely: 

4.2.1 Cosine Similarity Based Networks 
These networks are generated by first creating a topic probability 
vector for each document, then calculating the cosine similarity 
for each pair of actors, and linking each pair of actors for who the 
similarity value is equal to or higher than a user-defined threshold 
value. We provide a default threshold value of 0.5. In the resulting 
networks, link weights represent the similarity value, which ranges 
from the threshold value to 1. The networks are undirected.  

 

 
 

 

 

4.2.2 K - Top Similar Topic Cosine Similarity Based 
Network  
This is a variant of the method describe above, with the difference 
being that the topic probability vector for each document only 
includes the K common topics shared between any pair of 
documents. Conceptually, this represents a convergence towards 
the largest common denominator or consensus among a group of 
people; penalizing marginalized opinions – which the prior 
approach does capture.  

 
 
 

 

 

 

4.2.3 Max Topic Based Network 
In these networks, people are only connected if their highest 
scoring topics match. The shared top topic is stored as a property 
of the edge. This enables content-based edge labeling.  

4.2.4 Min Topic Based Network 
This is the counterpart to the method provide above. In these 
networks, people are only connected if their lowest scoring topics 
match. This network is useful for identifying the most distant 
people in terms of shared knowledge. The respective topic is 
stored as an edge property. Note that min topic serves as a pseudo 
control case or sanity check here – we hypothesize that these 
networks resemble the explicit social network least, and worse 
than any other type. 



5. Results 
To illustrate the types of network produced and compared herein, 
Figure 1 shows an example for each type for one randomly picked 
simulation game. Colors represent groups (based on modularity), 
node sizes are scaled by degree centrality, and node label sizes 
reflect betweeness centrality. The visualizations were produced in 
Gephi (https://gephi.org/). Graph a) represents the explicit social 
network. Graphs b-g show the implicit social networks (two token 
based networks (Soft-TfIdf, Jaccard) and the four topic based 
networks (#Topics: 15, Threshold: 0.2, #CommonTopics: 5)).  

The point to be made with these images – and this generalizes 
across the simulation games – is that none of the implicit social 
networks closely resembles the explicit one. But how far off are 
they? To answer this question, we produced each of these seven 
networks for all 33 simulation games. We then compared the 
implicit networks to the explicit one for each simulation game 
numerically by computing hamming distances and generated a 
matrix of respective scores for comparing any two networks 
(Tables 1.2). Hamming distances basically express the agreement 
in edge identity between any given pair of graphs. 

 

 

(a) Explicit Social Network 

 

(b) Implicit Social Network: Topic Cosine 

 

(c) Implicit Social Network: Top K Topic Cosine 

 

(d) Implicit Social Network: Max Topic 

 
 

(e) Implicit Social Network: Min Topic 



 

(f) Implicit Social Network: Jaccard 

 

(g) Implicit Social Network: Soft-TFIDF 

Figure 1. Explicit (a) and implicit (b-g) social networks for one simulation game.   

 

To drill deeper into illustrating the topic based networks, Figure 2 
shows the connection of individual authors through their top K 
(=5) topics selected from a pool of 20 topics. Authors (agent 

nodes) are shown on the left hand side, topics on the right hand 
side. This is the underlying information used for generating 
networks based on topic similarity for authors.  

 

 

Figure 2. Top 5 topic linkages for authors for one simulation game. Left side: name of authors, right side: topics.   

 

The percentage values in Table 1 quantify the difference between 
the implicit and explicit social networks. Table 2 aggregates these 
values into descriptive statistics. To ease the reading of the Tables, 
values are color coded on a green to red scale representing low to 
high disagreement. Our results suggest that the networks based on 
MaxTopic (a summarization/ topic based approach) and Jaccard (a 
lexical/ token level approach) are most similar to explicit social 
networks. Differences between the different simulation games 
exist, but the observed patterns are fairly robust across the games.  

As expected, the min topic networks are worse reconstructions of 
the given social structure than most other types derived from text 

data content – except for TopKCosineSimilarity networks. One 
explanation for this discrepancy might be that 
TopKCosineSimilarity by its algorithmic nature produces a higher 
number of edges; including a large amount of false positives when 
it comes to the conducted comparison. However, these additional 
edges might suggest meaningful further connections between 
people who share a certain amount of knowledge. Since these 
latent agreements are not entailed in or visible from the explicitly 
given structure, text mining based network construction can help 
to reveal them. Further follow-ups with the participants in the 
experiments would be needed to verify this assumption.  



Additionally, such deviations are a chance to complement or 
enhance our understanding of a given networks with suggestions 
for people who have some knowledge or information in common, 

but never actually talked to each other. These people could be 
introduced to each other, strategically distributed across work 
units, or serve as back-ups for their respective functional roles.  

  

Network Cosine MaxTopic MinTopic TopKCosine Jaccard Soft-TFIDF 

ChatData#4 8.50% 11.80% 17.30% 38.20% 3.90% 2.90% 

ChatData#5 9.20% 6.70% 21.30% 40.80% 3.40% 4.70% 

ChatData#6 12.40% 7.30% 24.60% 41.60% 4.50% 8.90% 

ChatData#7 7.60% 12.70% 36.00% 40.00% 10.00% 8.90% 

ChatData#8 6.30% 7.60% 23.20% 43.20% 1.60% 6.10% 

ChatData#11 13.20% 10.60% 21.00% 42.10% 2.60% 9.20% 

ChatData#13 12.60% 7.60% 15.00% 41.80% 5.40% 2.40% 

ChatData#14 7.40% 3.80% 20.20% 42.60% 33.30% 9.20% 

ChatData#15 10.30% 12.60% 29.50% 42.10% 4.90% 2.40% 

ChatData#16 12.40% 6.20% 27.80% 42.90% 5.80% 6.80% 

ChatData#17 10.50% 6.60% 26.00% 42.40% 10.00% 7.60% 

ChatData#18 9.50% 21.20% 27.10% 42.90% 5.80% 5.50% 

ChatData#19 11.60% 13.80% 20.50% 44.50% 3.90% 10.80% 

ChatData#21 10.00% 8.30% 18.10% 37.60% 6.10% 8.90% 

ChatData#23 9.40% 9.00% 22.10% 42.60% 6.80% 10.50% 

ChatData#24 6.00% 7.50% 34.30% 38.80% 2.60% 10.70% 

ChatData#25 9.20% 8.80% 36.30% 41.10% 5.30% 8.40% 

ChatData#26 8.40% 7.60% 17.50% 43.20% 15.00% 1.60% 

ChatData#27 11.40% 9.10% 35.60% 42.40% 5.60% 3.80% 

ChatData#28 12.60% 12.90% 16.30% 41.30% 7.40% 10.00% 

ChatData#29 10.00% 15.90% 26.60% 43.40% 4.70% 4.70% 

ChatData#30 10.30% 10.30% 22.60% 40.80% 6.10% 5.00% 

ChatData#32 8.20% 10.00% 36.30% 41.10% 3.90% 3.70% 

ChatData#33 6.60% 4.50% 20.80% 41.60% 1.80% 2.10% 

ChatData#34 8.90% 4.50% 25.10% 38.20% 3.20% 2.60% 

ChatData#35 8.90% 8.30% 32.60% 38.20% 4.70% 8.90% 

ChatData#37 5.30% 6.40% 28.80% 36.10% 7.10% 15.00% 

ChatData#38 4.00% 6.80% 29.50% 41.90% 3.80% 3.10% 

ChatData#39 7.10% 9.00% 35.40% 39.20% 8.40% 3.20% 

ChatData#40 10.50% 10.00% 21.60% 45.00% 16.70% 4.50% 

ChatData#41 10.50% 10.30% 22.10% 39.50% 8.50% 10.50% 

ChatData#42 6.70% 9.10% 21.90% 41.50% 1.60% 1.50% 

ChatData#43 9.20% 9.90% 48.40% 37.40% 4.20% 2.60% 

Table 1. Comparison of percentage difference between underlying networks and each similarity based networks.  

 



METRIC Cosine MaxTopic MinTopic TopKCosine Jaccard SoftTfIdf 

Mean 34.42 14.61 89.88 155.27 14.82 23.76 

Std. Deviat.  8.69 6.80 26.62 11.27 8.77 13.26 

Variance 75.46 46.30 708.41 126.93 76.88 175.70 

Max 50.00 33.00 148.00 176.00 32.00 57.00 

Min 17.00 7.00 46.00 117.00 0.00 5.00 

Median 35.00 13.00 85.00 158.00 15.00 21.00 

Avrg. Deviat. 63.85 39.18 599.42 107.40 65.05 148.67 
Table 2. Aggregated statistics over hamming distances. 
 

6. DISCUSSION AND CONCLUSION 
We provide new empirical insights into the relationship between 
social networks constructed from a) explicit data on network 
participants and the fact of communication exchange between 
them and b) based on the similarity of text data produced by these 
agents. Overall, the more simplistic approach on the lexical level 
(token based networks) outperforms more complex, topic based 
methods. This means that explicit social networks are best 
approximated by sticking to similarities on the word use level. 
More advanced representation of language use – in this case the 
summarization of an agent’s utterances into emerging themes – 
lead to network structures that deviate from explicitly given 
structures more strongly. This means that reconstructing social 
network data based on lexical features is the best option tested, 
while detecting alternative latent structure of people who share the 
same topical knowledge requires looking for thematic clusters of 
word use.  

Our findings are limited by the empirical data used and the 
techniques considered. While we did analyze 33 different 
communication sessions with different people playing the same 
roles, all data come from one particular domain; namely planning 
courses of action between collaborating individuals. We plan to 
address this limitation by also working with chat logs and 
communication data from other topic domains. We anticipate the 
outcome of this process to calibrate our findings presented herein. 
We also aim to experiment with additional methods for inferring 
social structure from text data, including the relation extraction 
approach explained in the background section. We also plan to 
enhance our findings by conducting deeper error analysis to 
understand the false positives and false negatives that the implicit 
networks contain. 

Finally, we will study how the implicit networks compare to each 
other, and try to identify how explicit social networks can best be 
enhanced with implicit ones and vice versa to gain a more 
comprehensive understanding of socio-semantic networks.  
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